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Preface

The following text is based on my twenty years experience in developing a surface in-
terpolation algorithm and five years experience with solving surface interpolation prob-
lems provided by people all over the world.
The success of interpolation and quality of the resulting surface depends on the config-
uration of input data, the selected method, parameters of interpolation, grid size and so 
on. From this point of view, surface interpolation can be considered as an art.
The first part describes mathematical elements of commonly used methods based on ex-
act mathematical formulations such as linear combination of radial basis functions, stat-
istical formulation of the best linear unbiased estimate or on the demand of minimal 
curvature of a resulting function.
The purpose of the second part is to design and implement a new interpolation method 
ABOS (Approximation Based On Smoothing), which would eliminate limitations of ex-
isting methods and which would be robust and flexible enough for interpolating any 
data set, such as a complex of geological and seismic measurements, temperature distri-
bution, height of a snow layer, concentration of contaminants in an aquifer or digital 
model of terrain.
The new method is not based on a mathematical definition of a resulting interpolation 
function. Instead, it provides tools for modelling surface shapes – three types of numer-
ical tensioning and smoothing – enabling to achieve smooth interpolation or approxima-
tion as well as an interpolation with sharp local extremes. 
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List of symbols
Symbol Meaning

ℜ3 three dimensional Euclidean space
XYZ sequence {X i ,Y i , Z i∈ℜ

3 , i=1,... , n }  of points in 3D space
x1 , x2 minimum and maximum of x-coordinates of points XYZ
y1 , y2 minimum and maximum of y-coordinates of points XYZ
z1 , z2 minimum and maximum of z-coordinates of points XYZ

),( yxf interpolation / approximation function
D planar domain of ),( yxf

)(hγ variogram function
P matrix representing grid values
i1 , j1 size of the grid = number of columns and rows of the matrix P

Dx step of the grid in the x-direction
Dy the step of the grid in the y-direction
NB matrix of the nearest points
K matrix of distances
Kmax   maximal element of the matrix K
3D three-dimensional 
RS resolution of map
Filter parameter of the ABOS method used for setting resolution
Dmc the minimal Chebyshev distance
A→B copy of the matrix (or vector or number) A into the matrix (or vector 

or number) B 
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Chapter 1
Introduction
Surface interpolation and construction of maps have been traditionally used in many fields 
such as physics, geophysics, geology, geodesy, hydrology, meteorology, bathymetry and so 
on.
The intention of this  work is  to  compare commonly used interpolation /  approximation 
methods, evaluate their advantages, insufficiencies and limitations and further to design and 
to implement a new universal interpolation / approximation method which would enable to 
solve a quite large class of tasks.

1.1 Formulation of the interpolation / approximation 
problem
Let us denote XYZ as a sequence {X i ,Y i , Z i∈ℜ

3 , i=1, , n} of points in 3D space and 
D as  a  rectangular  domain  containing  points XY={ X i , Y i∈ℜ

2 , i=1, , n } .  In  this 
work, the solving an interpolation or approximation problem will mean the finding a con-
tinuous  function  of  two  independent  variables f x , y  ,  for  which  f  X i , Y i=Z i  or
∣ f  X i , Y i−Z i∣ ∀ i=1, , n respectively.

Except for trivial cases (for example approximation by a plane or by a polynomial function 
of two independent variables of higher degree) it is usually not possible to express the inter-
polation / approximation function by a simple analytic formula. That is why the following 
procedure is used: 
The domain D containing the points XYZ is covered by a regular rectangular grid. At each 
node of the grid the z-value is calculated / estimated by the method solving the above-men-
tioned problem using all points XYZ or using only the points XYZ belonging to the certain 
surrounding of the node. This procedure is called gridding.
The value of the function f can then be computed, for example, using the bilinear equation
f x , y =a⋅xyb⋅xc⋅yd , where the coefficients a, b, c and d are determined by the 

corner points of the grid rectangle containing the point ),( yx .

1.2 Commonly used approaches to solution
The goal of this section is to present commonly used techniques for solving interpolation / 
approximation problems and to evaluate their applicability for the solving practical tasks. 
The below presented interpolation / approximation methods are:
- Triangulation with linear interpolation
- Natural neighbour
- Inverse distance
- Minimum curvature
- Regression by plane with weights
- Radial basis functions
- Kriging
Modification of these methods for solving large problems is described in the last paragraph 
of this chapter.
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1.2.1 Triangulation with linear interpolation
The method of triangulation with linear interpolation is historically one of the first methods 
used before the intensive development of computers. It is based on the division of the do-
main D into triangles. Each triangle then defines, by its three vertices, a plane – that is why 
the resulting surface is per partes linear.

Advantages: 
- very fast algorithm
- resulting surface is interpolative

Disadvantages:
- the domain of the function  f  is limited to the convex envelope of the points XYZ.
- resulting surface is not smooth and isolines consists of line segments 
- the division into triangles may be ambiguous, as the following simple example of alternat-
ive division of rectangle shows – in the first case a valley was created, in the second case a 
ridge was created. 

Fig. 1.2.1: Alternative division of rectangle into triangles.

Application:
This method is still used in geodesy and digital models of terrain. As a rule, characteristic 
points of terrain are measured – it means that the person performing terrain measurements 
surveys only points where the slope of terrain changes (tops, edges, valleys and so on) and 
thus avoids the above-mentioned ambiguity. For interpretation of such data, the Triangula-
tion with linear interpolation method is quite suitable.

1.2.2 Natural neighbour
The Natural neighbor is an interpolation method based on Voronoi tessellation. Voronoi 
tessellation can be defined as “the partitioning of a plane with n points into n convex poly-
gons such that each polygon contains exactly one point and every point in a given polygon 
is closer to its central point than to any other” (see [S11]). In other words, if { X i}i=1

n  is a 
given set of points in ℜ2 , than the Voronoi polygon corresponding to the point Xi is the set 
V i={ X ∈ℜ2 ;∣X , X i∣∣X , X m∣ ∀m≠i } .

A description of the natural neighbor interpolation technique follows:
Given a set of data points distributed on a plane, natural neighbour interpolation computes 
the interpolated value for a given point X as the weighted sum of the points which are natur-
al neighbors of X. The natural neighbors can be intuitively understood as those points which 
would be adjacent to X in a Voronoi tessellation of the point set including X. 
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Figure 1.2.2 depicts with black lines a Voronoi tessellation of the points A, B, C, D and E. 
The gray region marks the new Voronoi cell, which would be present if the point X were in-
cluded in the tessellation. The weights of points A, B,  C, D and E which are used to com-
pute the interpolated value of  X are respectively the areas of the grey region intersecting 
each original cell of A, B, C, D and E and are also known as the natural neighbor coordin-
ates of X.

 
Fig. 1.2.2: New Voronoi cell and areas for computation of neighbor point weights.

The surface formed by natural neighbour interpolation has the useful properties of being 
continuous  (C0)  everywhere  and  passing  exactly  through  z  values  of  all  data  points. 
Moreover, the interpolated surface is continuously differentiable (C1) everywhere except at 
the data points, providing smooth interpolation in contrast to the Triangulation with linear 
interpolation method.

Advantages: 
- fast algorithm
- resulting surface is interpolative and smooth except at the data points.

Disadvantages:
- the domain of the function  f  is limited to the convex envelope of the points XYZ
- the shape of the resulting surface is not acceptable in some fields such as in geology or    
hydrogeology.

Application:

The Natural neighbour method is mainly used in GIS systems as a digital model of terrain 
and fast interpolation of terrain data providing a smooth surface.

1.2.3 Inverse distance
This method computes a value of function f at an arbitrary point x , y ∈D as a weighted 
average of values  Zi:

f x , y =∑
i=1

n

Z i w i ,  where w i=
hi

∑
i=1

n

h i

, h i=
1

x−X i
2 y−Y i

22 and

2  is a smoothing parameter.

If the number of points n is too great, the value of ),( yxf  is calculated only from points 
belonging to the specified circle surrounding the point ),( yx . The method was frequently 
implemented in the first stages of computers development.
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Advantages: 
- simple computer implementation; for its simplicity, the method is implemented in almost 
all gridding software packages 
- if 2=0 ,  the method provides interpolation.

Disadvantages: 
- high computer time consumption if the number of points n is large (due to computation of 
distances)
- typical generation of "bull's-eyes" surrounding the position of point locations within the 
domain D – that is why the resulting function is not acceptable for most applications.

1.2.4 Minimum curvature method
This method and namely its computer implementation was developed by W.H.F. Smith and 
P.Wessel (see [1]) in 1990. The interpolated surface generated by the Minimum curvature 
method is analogous to a thin, linearly elastic plate passing through each of the data values 
with a minimum amount of bending. The algorithm of the Minimum curvature method is 
based  on  the  numerical  solution  of  the  modified  biharmonic  differential  equation
1−T ∇4 f x , y −T ∇ 2 f x , y=0 with three boundary conditions:

1. 1−T ∂2 f /∂n2T ∂ f /∂ n=0  

2. ∂∇2 f /∂ n=0  on the edges

3. ∂2 f /∂ x ∂ y=0  at the corners 

where 
T ∈ 〈0,1〉 is a tensioning parameter, 
∇2 is the Laplacian operator ∇2 f =∂2 f /∂ x2∂2 f /∂ y2 ,
∇4=∇22 is the biharmonic operator 
∇4 f =∂4 f /∂ x4∂4 f /∂ y42∂4 f /∂ x 2∂ y 2 and

n is the boundary normal.

If T=0, the biharmonic differential equation is solved; if T=1, the Laplace differential equa-
tion is solved – in this case the resulting surface may have local extremes only at points 
XYZ.

Advantages:
- speed of computation is high and an increasing number of points XYZ has small influence 
on decreasing the computational speed.
- suitable method for a large number of points XYZ.

Disadvantages:
- complicated algorithm and computer implementation
- if the parameter T is near zero, the resulting surface may have local extremes out of the 
points location
- bad ability to conserve extrapolation trends.   

Application:
- universal method suitable for smooth approximation and interpolation (for example distri-
bution of temperature, water heads, potential fields and so on).
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1.2.5 Regression by plane with weights
This method is based on regression by plane f x , y =axbyc using a weighted least 
square fit. The weight wi assigned to the point ),,( iii ZYX  is computed as an inverse dis-
tance from point ),( yx  to the point ),( ii YX . Then the minimum of the following function 
of three independent variables has to be found:

F a , b , c=∑
i=1

n

wi  f X i , Y i−Z i
2=∑

i=1

n

w iaX ibY ic−Z i
2 , which leads to a solu-

tion of three linear equations:
∂F
∂ a
=0=2∑

i=1

n

w i X iaX ibY ic−Z i  

∂F
∂b
=0=2∑

i=1

n

w iY iaX ibY ic−Z i

∂F
∂ c
=0=2∑

i=1

n

w iaX ibY ic−Z i

After rearrangement the following equations are obtained:

a∑
i=1

n

w i X i
2b∑

i=1

n

wi X i Y ic∑
i=1

n

w i X i=∑
i=1

n

wi X i Z i

a∑
i=1

n

w i X iY ib∑
i=1

n

wi Y i
2c∑

i=1

n

w iY i=∑
i=1

n

wi Y i Z i

a∑
i=1

n

w i X ib∑
i=1

n

wi Y ic∑
i=1

n

wi=∑
i=1

n

w i Z i

In addition to the regression by plane, some mapping packages, for example Surfer (see 
[S2]) or ConPac library (see [S10]), offer possibility to use polynomials of higher order.

Advantages:
- simple algorithm
- good extrapolation properties

Disadvantages:
- resulting function is only approximative
- slow speed of computation if n is great (due to computation of distances)

Application:
-  surface  reconstruction  from  digitized  contour  lines.  The  method  was  frequently  used 
namely in the past, when contour maps were transferred from paper sheets to digital maps.

1.2.6 Radial basis functions
The method of Radial basis functions uses the interpolation function in the form:

f x , y =p x , y ∑
i=1

n

w i⋅∣ x , y−X i ,Y i∣ (1.2.6)

where 
p x , y   is a polynomial
w i∈ℜ are real weights
∣x , y− X i , Y i∣  is the Euclidean distance between points ),( yx  and ),( ii YX
r   is a radial basis function
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Commonly used radial basis functions are (c2 is the smoothing parameter):
Multiquadric: r =r 2c2  
Multilog: r =log r2c2
Natural cubic spline: r =r 2c23 /2

Natural plate spline: r =r2c2⋅log r2c2

The interpolation process starts with polynomial regression using the polynomial ),( yxp . 
Then  the  following  system  of   n linear  equations  is  solved  for  unknown  weights  iw , 

ni ,...,1= :

Z j−p  X j , Y j=∑
i=1

n

wi⋅∣ X j , Y j− X i , Y i∣ , j=1 , , n

As soon as the weights iw  are determined, the z-value of the surface can be directly com-
puted from equation (1.2.6) at any point x , y ∈D .

Advantages:
- simple computer implementation; the system of linear equations has to be solved only 
once (in contrast to the Kriging method, where a system of linear equations must be solved 
for each grid node – see the next section)
- the resulting function is interpolative
- easy implementation of smoothing

Disadvantages:
- if the number of points n is large, the number of linear equations is also large; moreover 
the matrix of the system is not sparse, which leads to a long computational time and pos-
sibly to the propagation of rounding errors. That is why this method, as presented, is used 
for solving small problems with up to a few thousand points. Solving large problems is also 
possible, but requires an additional algorithm for searching points in the specified surround-
ing of each grid node – see paragraph 1.2.8 Modification for solving large problems.

Application:
- universal method suitable for use in any field

1.2.7 Kriging
Kriging is an interpolation method, which was originally developed for use in geology by 
D. G. Krige (see [2]), a professor at the University of Witwatersrand, South Africa,  in the 
1950s. In fact, the work of professor Krige is the base of science field called geostatistics. 
Kriging is probably the most often used method for solving interpolation / approximation 
problems, namely because it is based on the statistical formulation of the  best linear un-
biased estimate. An important concept for deriving this method is empirical or experiment-
al variogram h :

h=1
2
⋅ 1
C N h∑N h  Z i−Z j

2
, where

N h={i , j : ∣X i ,Y i− X j ,Y j∣=h }   and  ))(( hNC  is the number of elements of the 
set N h . 

For real data it is not probable that a pair of points will satisfy the condition
∣X i ,Y i− X j−Y j∣=h  and therefore for practical computation the set )(hN  is specified 

as N h={i , j : ∣X i ,Y i− X j ,Y j∣∈ [h− h ,hh ]}  
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The empirical variogram is approximated using the  theoretical variogram or  model. The 
commonly used models are:
Linear model:
h=C0Sh , h≠0 where  C0  is  the so called  nugget  effect  and  S  is  the  unknown 

slope.
Gaussian model:
h=C0C−C0⋅{1−exp−h2/a2}

Exponential model:
h=C0C−C0⋅{1−exp−h /a}

The Kriging method is intended for estimating the interpolation / approximation function 
),( yxf  at point ),( YX  under the following assumptions:

a) The estimate Z of function ),( yxf  at an arbitrary selected point DYX ∈),(  can be ex-

pressed as a weighted average Z=∑
i=1

n

w i⋅Z i

b) Sum of weights is 1: ∑
i=1

n

wi=1

c) The estimate of value Z is unbiased i.e. the mean [ ] 0),( =− ZyxfE . 

The weights are to be computed so that the dispersion variance )),(( ZyxfD −  is minimal. 
In the next derivation we use f instead of ),( yxf . Taking into consideration the definition 
of dispersion variance D X =E  X 2−E  X 2 and assumption c) it is obvious that we 
have to minimize the expression 

E [ f−∑
i=1

n

wi⋅Z i]
2
=E [ f⋅∑

i=1

n

w i−∑
i−1

n

w i⋅Z i]
2
=E [∑

i=1

n

w i⋅f −∑
i=1

n

wi⋅Z i]
2
=

= E [∑
i=1

n

wi⋅ f −Z i]
2
=∑

i=1

n

∑
j=1

n

w i w j E  f−Z i f−Z j

 
From equation

E [Z i−Z j ]
2=E [Z i− f  f−Z j]

2=E [Z i− f ]2−2 E [ f −Z i f−Z j]E [ f −Z j]
2

it follows that

E [ f −Z i f−Z j]=
1
2
⋅[E [ f−Z i]

2E [ f−Z j]
2−E [Z i−Z j ]

2] .

This term can be substituted into the expression which has to be minimized:

∑
i=1

n

∑
j=1

n

wi w j E  f −Z i f −Z j=

∑
i=1

n

∑
j=1

n

wi w j
1
2
[E [ f −Z i]

2−E [ f −Z j ]
2−E [Z i−Z j]

2]=

∑
i=1

n

∑
j=1

n

wi w j
1
2

E [ f −Z j]
2∑

i=1

n

∑
j=1

n

wi w j
1
2

E [ f −Z i]
2−∑

i=1

n

∑
j=1

n

wi w j
1
2

E [Z i−Z j]
2
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The first two terms can be simplified:

∑
i=1

n

∑
j=1

n

wi w j
1
2

E [ f −Z j]
2=∑

j=1

n 1
2

w j E [ f −Z j]∑
i=1

n

w i=∑
j=1

n 1
2

E [ f−Z j]
2

∑
i=1

n

∑
j=1

n

wi w j
1
2

E [ f −Z i]
2=∑

i=1

n 1
2

w i E [ f −Z i ]∑
j=1

n

wi=∑
i=1

n 1
2

E [ f−Z i]
2

The final form of the expression, which has to be minimized is:

2∑
j=1

n 1
2

E [ f−Z j]
2−∑

i=1

n

∑
j=1

n

wi w j
1
2

E [Z i−Z j ]
2=F w1, ,wn

If the function ),...,( 1 nwwF  has to be minimal, the partial derivatives according to wk must 
be zero:

∂ F /∂w k=0 ∀ k=1 , , n  

It means that the following system of linear equations is obtained:

∑
i=1

n 1
2

E [Z k−Z i]
2wi=

1
2

E [ f−Z k ]
2 , k=1, , n

The halves of means )]([
2
1 2

ik ZZE −  and )]([
2
1 2

iZfE −  can be substituted by values 

from the theoretical variogram. The system of equations must be completed by condition b), 
i.e. the sum of weights is 1 (that is why a fictive variable  has to be added).
In the form of matrix notation the system of linear equations can be expressed as:

[ 1
1 0 ][w ]=[

x

1 ]
where  ij=∣ X i ,Y i− X j , Y j∣ and i

x=∣ x , y− X i ,Y i∣ , i , j=1 , , n .

Advantages:
- the algorithm is based on statistical formulation of the best linear unbiased estimate which 
means, there is no better interpolation method from the statistical point of view.

Disadvantages:
 - the weights wi must be computed (i.e. the system of linear equations must be solved) for 
each node of the grid.
 - if the number of points n is large, a large number of linear equations must be solved; that 
is why this method is used for solving small problems with up to a few thousand points. For 
solving large problems an additional algorithm for searching points in the specified sur-
rounding of each grid node must be implemented, as described in the next paragraph.
 - the method produces undesirable “pits” and “circular” isolines in the generated surface – 
see  examples  in  paragraphs  2.4.1  Smoothness  of  interpolation and oscillations,   2.4.2  
Shape of generated surface and 5.1 Zero-based maps.

Application:
– universal method designed especially for geology and geophysics applications.
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1.2.8 Modification for solving large problems
Except  for  the  Triangulation  with  linear  interpolation  and  Minimum curvature  method, 
presented techniques need to compute horizontal distances from estimated point (grid node) 
to all points XYZ. For large problems (having thousands or more points) it means increasing 
of computational time, which brings necessity to reduce number of points involved into the 
estimation. This is solved by specification of the surrounding which determines the set of 
points included into the estimation. Of course, additional algorithm for searching of points 
falling into the surrounding must be implemented.
On one hand the method can be used for large problems, but on the other hand new com-
plications are involved:
- The surrounding is usually circular (or elliptical, if an anisotropy has to be modelled) 

with  specified  radius.  In  addition,  implementations of gridding procedures  requires 
specification of maximal and minimal number of points, minimal and maximal number 
of points in each quadrant (octant) and so on. It means that additional parameters influ-
encing the quality of resulting function has to be entered.

- The resulting surface may contain discontinuities (see [4]) as the set of selected points 
may change while moving the estimated point from one grid node to the next. This 
phenomenon is illustrated in the next chapter in the paragraph 2.4.3 Conservation of 
an extrapolation trend. 

- In the case of the Radial basis functions method the system of linear equation must be 
completed and solved for each node of grid and the main advantage of this method is 
lost.
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Chapter 2
The ABOS method
The goal of this chapter is to design an interpolation / approximation method which is suffi-
ciently flexible and robust enough for solving large problems, provides results comparable 
with the Kriging method (respectively with the Radial basis function method or Minimum 
curvature method) and which does not have disadvantages and limitations of these methods 
presented in the first chapter. 

The method was called ABOS (Approximation Based On Smoothing) and despite the fact 
that it should be used as an approximation method, according to its name, it can also be 
used for solving interpolation problems, as it will be explained in this chapter.

2.1 The definition of the interpolation function and 
notations
The interpolation function is determined by a matrix P of real numbers, whose elements (z-
coordinates) are assigned to nodes of a regular rectangular grid covering the domain D (see 
the next figure).

Figure 2.1: Regular rectangular grid for defining the interpolation function.

The value of the interpolation function at any point ),( 00 yx  within the grid can be evalu-
ated from the equation of the bilinear polynomial f x , y =a⋅xyb⋅xc⋅yd , which is 
defined by coordinates of corner points of the grid rectangle containing the point ),( 00 yx .

The following notation is used in the next text:

x1 , x2 minimum and maximum of x-coordinates of points XYZ
y1 , y2 minimum and maximum of y-coordinates of points XYZ
z1 , z2  minimum and maximum of z-coordinates of points XYZ
i1 , j1  size of the grid = number of columns and rows of the matrix P

Pi,j  elements of the matrix P , i=1, ,i1 , j=1, , j1
DP  auxiliary matrix with the same size as the matrix P
Z  vector of z-coordinates of points XYZ
DZ auxiliary vector with the same size as the vector Z
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NB matrix of the nearest points - integer matrix with the same size as the matrix P con-
taining for each node of the grid the order index of the nearest point XYZ

K matrix of distances – integer matrix with the same size as the matrix P containing 
for each node of the grid the distance to the nearest point XYZ measured in units of 
grid

Kmax   maximal element of the matrix K
Filter a parameter of the ABOS method used for setting resolution
RS resolution of map; RS=max {x2−x1 , y2− y1} /Filter
Dx the step of the grid in the x-direction; Dx= x2− x1/i1−1
Dy the step of the grid in the y-direction; Dx= y2− y1/ j1−1
Dmc the minimal Chebyshev distance between pairs of points XYZ; 

Dmc=min{max {∣X i−X j∣,∣Y i−Y j∣} ; i≠ j ∧ i , j=1, , n}
A→B means a copy of the matrix (or vector or number)  A into the matrix (or vector or 

number) B 

2.2 Interpolation algorithm
The algorithm of the ABOS method can be briefly described by the following scheme:

1. Filtering points XYZ, specification of the grid, computation of the matrices NB and 
K,  Z→DZ,  0→DP

2. Per partes constant interpolation of values DZ into the matrix P
3. Tensioning and smoothing of the matrix P
4. P+DP→P
5. ),( iii YXfZ − →DZi

6. If the maximal difference max { DZ i ,i=1, , n } does not exceed defined preci-
sion, the algorithm is finished

7. P→DP, continue from step 2 again (= start the next iteration cycle)

In the following paragraphs the particular steps of the algorithm are explained in full detail.

2.2.1 Filtering of points XYZ
If an interpolation / approximation problem has to be solved, it is necessary to take into con-
sideration the fact that there may be some points XYZ with a horizontal distance less than 
the desired resolution of the resulting surface. That is why the first implemented algorithm 
in the ABOS method is the filtering of points  XYZ. Filtering substitutes every two points 

),,( iii ZYX , ),,( jjj ZYX , such that 
∣X i−X j ∣RS ∧ ∣Y i−Y j ∣RS , (2.2.1)

by one point ),,( kkk ZYX with average coordinates i.e. 2/)( jik XXX += , 
2/)( jik YYY +=  and 2/)( jik ZZZ += .

The resolution  RS is computed as  max {x2− x1 , y2− y1} /Filter , where  Filter is an 
optional parameter of the ABOS method. It is similar to the resolution of a digital picture – 
if the distance of two points with different colours is smaller than the pixel size of the digit-
al picture, only one point with “average” colour can be seen.

The formulation of the filtering principle is easy, but computer implementation represents 
an efficiency problem, which is discussed in paragraph 3.4.1 Implementation of filtering in 
Chapter 3.
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2.2.2 Specification of the grid
The size of the regular rectangular grid is set according to the following points:

1. The greater side of the rectangular domain D is selected, i.e. greater number of 
x21= x2− x1 and y21= y2− y1 . Without loss of generality we can assume 

that x21 is greater.
2. The minimal grid size is computed as i0=round x21/Dmc  , where Dmc is the 

minimal Chebyshev distance between pairs of points XYZ: 
Dmc=min {max {∣X i−X j∣,∣Y i−Y j∣} ; i≠ j ∧ i , j=1, , n}

3. The optimal grid size is set as: i1=max { k⋅i0 ; k=1, ,5 ∧ k⋅i0Filter }
4. The second size of the grid is: j1=round  y21/ x21⋅i1−11

The presented procedure ensures that the difference between Dx and Dy is minimal i.e. the 
regular rectangular grid is as close to a square grid as possible.

2.2.3 Computation of matrices NB and K
The matrices NB and K are computed using the algorithm based on “circulation” around the 
points XYZ, as the following figure indicates:

Fig. 2.2.3a: Computation of the matrices NB and K.

All elements of the matrices NB and K are initially set to zero and the process of circulation 
continues as long as there are zero values in the matrix NB. The Euclidean distance is com-
pared  only  if  the  element Ki,j corresponding  to  the  evaluated  node  is  not  zero  and 
IC ∕ 2 ≤ K i j , where  IC  is the ordinal number of the current circulation. By this way, 

the number of distance computations is significantly reduced.
The computation of the matrix NB defines a natural division of the domain of the interpola-
tion function into polygons (so called Voronoi or Thiessen polygons, see the following fig-
ure), inside which interpolation with constant values is performed.

 
Fig. 2.2.3b: Division of the domain of the interpolation function.
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2.2.4 Per partes constant interpolation
After computing the matrix of nearest points, per partes interpolation (see figure 2.2.4) is 
very simple: )( ,, jiji NBDZP = .

 
Fig. 2.2.4: Per partes constant interpolation.

2.2.5 Tensioning
Tensioning of the surface (see figure 2.2.5) modifies the matrix P according to the formula:

P i , j=P ik , jP i , jkP i−k , jP i , j−k /4,  (2.2.5) 
where jiKk ,= , i=1, ,i1 , j=1, , j1

 
Fig. 2.2.5: Tensioning of the surface.
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The following scheme shows the nodes (marked by grey circles) corresponding to the ele-
ments of the matrix P, which are involved in tensioning.

Tensioning is repeatedly performed in the loop with this pattern:
  DO N = MAX(4,Kmax/2+2),1,-1
    …
  ENDDO
If k is greater than decreasing loop variable N, then k = N.

2.2.6 Linear tensioning
Linear tensioning of the surface (see figure 2.2.6) modifies the matrix P according to the 
formula for weighted average:
P i , j=Q⋅P iu , jvP i−u , j−vPi−v , juP iv , j−u/2⋅Q2 (2.2.6)
∀ i=1, ,i1 , j=1, , j1 ; K i , j0  

where ),( vu  is the vector from the node i, j to the nearest grid node of the point NBi,j  and 
the weight 2

,max )( jiKKLQ −⋅= .  The constant ))714,0107,0((1 maxmax KKL ⋅−⋅=  is an 
empirical constant suppressing the influence of Kmax.

In the implementation of the ABOS method there are four degrees of linear tensioning 0, 1, 
2 and 3. Here presented formulas are valid for the default degree 1; their modifications for 
other degrees are described in the paragraph 3.4.2 Degrees of linear tensioning.

 
Fig. 2.2.6: Linear tensioning of the surface.

The following scheme shows the nodes (marked by grey circles) corresponding to the ele-
ments of the matrix P, which are involved in linear tensioning.

17

grid node corresponding to the element Pi,j

nodes involved in tensioning

the nearest point XYZ

grid node corresponding to the element Pi,j

nodes involved in linear tensioning

the nearest point XYZ



Linear tensioning is repeatedly performed in the loop with this pattern:
  DO N = MAX(4,Kmax/2+2),1,-1
    …
  ENDDO
If the length ),( vu  of the vector ),( vu  is greater than decreasing loop variable N, then the 
vector ),( vu  is multiplied by constant c  so that c⋅∣u , v ∣= N .

2.2.7 Smoothing
Smoothing (see figure 2.2.7) replaces elements of the matrix P by the value of weighted av-
erage:

P i , j= ∑
k=i−1

i1

∑
l= j−1

j1

Pk ,lP i , j⋅q⋅t i , j−1/ q⋅ti , j8 , i=1, , i1 , j=1, , j1  (2.2.7)

where q is the parameter of the ABOS method controlling smoothness of the interpolation / 
approximation (its default value is 0.5)  and  jit ,   are weights, which are zero before the first 
smoothing and afterwards they are computed according to the formula

t i , j= ∑
k=i−2

i2

∑
l= j−2

j2

P i , j−P k , l
2
, i=1, , i1 , j=1, , j1

and scaled into the interval <0,100>. In brief, it can be said, the values of jit ,  are higher at 
nodes where the surface has a local extreme and lower at nodes where the surface is de-
creasing / increasing. 

 
Fig. 2.2.7: Smoothing of the surface.

The following scheme shows the nodes (marked by grey circles) corresponding to the ele-
ments of the matrix P, which are involved in smoothing.

Smoothing is repeatedly performed in the loop with this pattern:
  DO N = MAX(4,Kmax*Kmax/16),1,-1
    …
  ENDDO
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As an option, the ABOS method enables to perform so called LES smoothing – in this case 
the formula (2.2.7) is not applied if the decreasing loop variable N is greater than K i , j1 . 
This modification of smoothing suppresses oscillations and exceeding of local extremes, if 
they occur (see paragraph 2.4.1 Smoothness of interpolation and oscillations).

2.2.8 Iteration cycle
After smoothing, the matrices  P and  DP are added element by element and the result is 
stored again in the matrix P. Note that in the first iteration step the matrix DP is zero – that 
is why the matrix P does not change.

The tensioned and smoothed surface does not pass through the z-coordinates of points XYZ 
exactly, so the differences ),( iiii YXfZDZ −= , ni ,...,1=  are calculated. 

If the maximal difference max { DZ i ,i=1, , n } is less than the specified accuracy of the 
interpolation  /  approximation  multiplied  by  z2−z1/100 ,  the  algorithm of  the  ABOS 
method is finished. In the opposite case the matrix P is copied into the matrix DP and the 
algorithm continues from step 2, where a new iteration cycle begins. It differs from the first 
cycle only in these points:
- the matrix DP is not zero
- per partes constant interpolation is applied to the difference values DZi  and not to the 

original z-coordinates of the points XYZ
- if the maximal difference in the current cycle is not less than the one in the previous 

cycle, the problem is considered to be non-converging and the algorithm is finished.

After each smoothing of the surface, the inaccuracy of the solution can be decreased by lin-
ear transformation of the matrix P:

a⋅P i , jbP i , j , where constants  a  and  b  minimize the term

∑
i=1

n

a⋅f  X i , Y ib−DZ i
2

In this way, the number of iteration cycles can be reduced by up to 30%.

The accuracy, another parameter of the ABOS method, is specified as a percentage value 
from the difference z2−z1 . The default value is 1; if 0 is specified and the iteration pro-
cess ends with zero maximal difference, then interpolation is achieved.

2.3 Flexibility of the ABOS method
Most interpolation methods offer some possibility how to modify a constructed surface. For 
example, the Radial basis function method enables to vary the smoothness of a surface us-
ing the smoothing parameter, the Kriging method may use different variogram models with 
different parameters and the Minimum curvature method uses the tension parameter.
The ABOS method can modify the created surface namely through the use of the smooth-
ness parameter  q (see paragraph 2.2.7 Smoothing) and an approximation can be achieved 
by setting an appropriate accuracy parameter. Moreover, the number of smoothing cycles 
suggested by the implementation of the ABOS method SURGEF can be increased (see 3.10 
Running SURGEF.EXE)  so that a suitable trend surface is obtained. The cross-section 
through seven surfaces in the next figure illustrates possible modifications of the surface 
shape generated by the ABOS method.
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Fig. 2.3: Flexibility of the ABOS method interpolation / approximation. 

The graphical user interface SurGe offers a tool for setting suitable parameters depending 
on the desired interpolation / approximation type (see paragraph 4.2.3.2 Interpolation para-
meters). 
The usage of a trend surface is demonstrated in paragraph 2.4.3 Conservation of an extra-
polation trend and in section 5.2 Extrapolation outside the XYZ points domain.

2.4 Comparison with other interpolation methods
In this section the ABOS method is compared with three methods, which are considered to 
be the most significant:
- the Minimum curvature method with the tension 0.1
- the Kriging method using the linear model and zero nugget effect
- the Radial basis functions method using the multiquadric basis functions.

Although  the  Radial  basis  functions  method was  included,  its  graphical  results  are  not 
presented because it provides almost the same result as the Kriging method (no differences 
can  be  seen  in  the  graphical  representation  of  results).  Interpolations  using  Minimum 
curvature were performed using the program SURFACE, which is a part of the GMT sys-
tem (see [S1]), while Kriging was performed using Surfer software (see [S2]).
To compare interpolation methods, we will use three data sets OSCIL, SHAPE and  SIBIR. 
Characteristics of these examples are summarized in the following table:
Data set Number 

Of points
Domain range
x Y

Grid size Grid step
X Y

Figure

OSCIL 17 0-1 0-1 257x257 3.90625e-3 3.90625e-3 2.4.1a
SHAPE 30 0-1000 0-640 101x65 10 10 2.4.2a
SIBIR 13504 0-73600 0-51200 737x513 100 100 2.4.3a

The first example (see figure 2.4.1a) OSCIL is intended for examining of oscillation phe-
nomena,  which  may  occur  especially  if  a  smooth  interpolation  is  used.   The  example 
SHAPE was designed for comparison of surface shape. Figure 2.4.2a shows the distribution 
of points XYZ and contains the horizontal projection of two cross-sections A-A’ and B-B’ 
used for detailed illustration of the surface shape. The third example (see figure 2.4.3a) is 
used for the comparison of trend conservation. The cross-section A-A’ was designed for 
demonstrating extrapolation properties of the tested methods i.e.  for  evaluating how the 
tested methods conserve trend in areas where points are missing. 

2.4.1 Smoothness of interpolation and oscillations
Depending on the configuration of the points  XYZ a smooth interpolation may cause un-
wanted oscillations in the generated surface, which is a common problem of most smooth 
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interpolation methods. In this paragraph we will  examine oscillations on a specially de-
signed example (see figure 2.4.1a) containing 13 points distributed along both diagonals of 
a square. All points have z-coordinate equal to zero except the point in the centre of the 
square, where the z-coordinate is one. We can expect that there will be oscillations between 
points having zero z-coordinates – that is why we will focus our attention to the cross-sec-
tion going through points L09, L05 and L01.

 
Fig. 2.4.1a: Distribution of points in the example OSCIL.

Firstly let us compare surfaces generated by the Minimum curvature, Kriging and ABOS 
method. It is obvious (see the next figure 2.4.1b) that the Minimum curvature method with 
tensioning 0.1 and the Kriging method with the linear model and zero nugget effect produce 
very similar surfaces. The ABOS method with a smoothing parameter of 9.0 produces a 
similar surface only along diagonals as indicates figure 2.4.1b and 2.4.1c, but otherwise 
there are apparent differences in the shape of undesirable “circular” contours (for example 
between points L05 and L06).

 
Fig. 2.4.1b: Surface generated by the Minimum curvature, Kriging and ABOS method, re-
spectively.

In all three cases the tested interpolation methods create a sharp local extreme at the point 
L13 as follows from figure 2.4.1c.
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Fig. 2.4.1c: Cross-section through points L13, L09, L05 and L01.

Let’s now examine details in the cross-section going through points L09, L05 and L01 
where the oscillations were expected. As for the size of oscillation between points L09 and 
L05, the Kriging method provides the best result  while the Minimum curvature method 
provides the worst result. As for oscillation between points L05 and L01, both named meth-
ods still produce oscillations but in the opposite order – the oscillation size produced by the 
Minimum curvature method is slightly smaller than in the case of Kriging method.  

The ABOS method produced worse results than the Kriging and better results than Minim-
um curvature method between points L09 and L05, but oscillations between points L05 and 
L01 are negligible. Moreover, if LES smoothing is used during the interpolation process 
(see paragraph 2.2.7 Smoothing), the suppression of oscillations and improper extremes is 
very effective.

 
Fig. 2.4.1d: Cross-section through points L09, L05 and L01.

In any case,  smooth interpolation may produce unwanted oscillations and improper ex-
tremes, which for example means that there are areas containing negative values in the solu-
tion of the interpolation problem, while only positive or zero values are possible. This situ-
ation is simply solved in the graphical user interface as described in paragraph 5.1 Zero-
based maps.

22



2.4.2 Shape of generated surface
One of the first aspects evaluated by the user of interpolating technique is the shape of the 
created surface – the surface should be smooth, local extremes should be located at point 
positions, there should not be unsubstantiated bends on contour lines and so on. 

For evaluation of these properties we will use data showed on figure 2.4.2a.

 
Fig. 2.4.2a: Distribution of points in the example SHAPE.

The next three figures show contours of surfaces created by the Minimum curvature meth-
od, Kriging and the ABOS method.

 
Fig. 2.4.2b:  Interpolation of the SHAPE data set using the Minimum curvature method.
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Fig. 2.4.2c: Interpolation of the SHAPE data set using the Kriging method.

 
Fig. 2.4.2d: Interpolation of the SHAPE data set using the ABOS method.
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The resulting function  ),( yxf  can be considered as interpolative in all three cases – the 
maximal difference max {∣ f  X i , Y i−Z i∣, i=1, , 30 } does not exceed 0,002. 

It is apparent that contours generated by the ABOS method are not so curved in the sur-
rounding of some points (L18, L25, L26, L12, L13, L06, L23, L22) as in the case of the 
Kriging or Minimum curvature method.

Cross-sections provide another interesting comparison:

 
Fig. 2.4.2e: Cross-section A-A’ through points L13, L14, L19 and L09.

 
Fig. 2.4.2f: Cross-section B-B’ through points L26, L25, L18, L10, L24, L15, L16, L17 and 
L02.

The cross-section A-A’ (see figure 2.4.2e) shows that there is not significant difference 
between compared methods especially between the ABOS and Kriging method. Another 
situation is apparent in the case of cross-section B-B’ leading through the “valley” (see fig-
ure 2.4.2f). The Minimum curvature method and Kriging produce “hills” between points al-
though there is no reason for them.
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2.4.3 Conservation of an extrapolation trend
The goal of the third example with the SIBIR data set (see the next figure) is to demonstrate 
the ability of tested methods to conserve trend in the regions without points.

 
Fig. 2.4.3a: Distribution of points in the example SIBIR.

Again, the next three figures enable to compare the surface generated by the Minimum 
curvature, Kriging and ABOS methods. In the case of the ABOS method the interpolation 
with trend function was applied, which is the procedure implemented in the graphical user 
interface SurGe, as described in the paragraph 4.2.3.10 Interpolation with a trend surface.

 
Fig. 2.4.3b: Interpolation of the SIBIR data set using the Minimum curvature method.
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Fig. 2.4.3c: Interpolation of the SIBIR data set using the Kriging method.

 
Fig. 2.4.3d: Interpolation of the SIBIR data set using the ABOS method.
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All three methods generate apparently almost the same surface in the area densely covered 
by points XYZ, but at peripheral parts there are differences.

The surface created by the Minimum curvature method is smooth but it tends to be flat at 
the peripheral parts without points and even increases (see the upper right corner of the map 
in figure 2.4.3b) while it should decrease.

The Kriging method produces apparent “jumps” (discontinuities) at peripheral areas as ex-
pected due to the selection of points (max. 64) falling into the specified circle surrounding 
with a radius of 44600 units. The radius and maximal number of selected points was set by 
the used software – if one or both of these parameters were smaller, the jumps would be 
even higher. Without respect to the discontinuities, the ability of the Kriging method to con-
serve the extrapolation trend is better than in the case of the Minimum curvature method.

The surface created by the ABOS method does not have the deficiencies observed in the 
previous two cases and the cross-section A-A’ confirms that the conservation of extrapola-
tion trend is the best (see the next figure).

 
Fig. 2.4.2e: Cross-section A-A’.

2.4.4 Speed of interpolation
It has no sense to compare the speed of interpolation methods for small problems i.e. if the 
number of points is up to a few thousand, because all tested methods finish within a few 
seconds. However, if the number of points is greater, the computational speed becomes an 
important issue. 

In the following list there are computational times consumed during solving interpolation 
with the SIBIR data set mentioned in the previous paragraph.

The Triangulation with linear interpolation …     5 seconds
The Natural neighbour method …   16 seconds
The Inverse distance method … 350 seconds
The Radial basis functions method … 515 seconds 
The Minimum curvature method …   11 seconds
The Kriging method … 530 seconds
The ABOS method …   18 seconds

The time was, of course, measured on the same computer with the CPU Intel Pentium M 
1.6GHz and memory 512 MB RAM.
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The time consumed by the Kriging method and the Radial basis functions method may 
seem to be curious, but with respect to the selected grid consisting of 737x513 nodes and 
the maximal number of selected points 64, the system of up to 64 linear equations had to be 
solved 378081 times. 

2.4.5 Summary
The presented examples show that the ABOS method provides results comparable with 
highly sophisticated interpolation /  approximation methods such as Minimum curvature, 
Kriging or Radial basis functions even if its mathematical basis is very poor. Moreover, 
ABOS is able to solve large problems without necessity to search points in specified sur-
rounding of grid nodes and to solve systems of equations.  As for  computational  speed, 
ABOS is about twenty times faster than Kriging or Radial basis function method.
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Chapter 3
Computer implementation
The goal of the computer implementation of the ABOS method is the creation of a flexible 
program, which is suitable for usage in modern graphical computer applications. 
This chapter describes important aspects of the SURGEF implementation while the graphic-
al user interface SurGe for Windows operating system is described in the fourth chapter.

3.1 Selection of application type
Due to the fact that there is no uniform graphical user interface for all computer platforms, 
the program was designed as a console application named SURGEF with defined interface 
described in the documentation in full detail (see section  3.9 Interface for user applica-
tions.) 

3.2 Selection of programming language
For the implementation of the ABOS method the programming language FORTRAN 77 
was selected. The reasons for such a selection are:

1. Up to now, the programming language FORTRAN is the only language designed 
for the creation of scientific and technical applications.

2. In spite of the fact that the design of FORTRAN is obsolete, its development is con-
tinuing and its compilers exist for all computer platforms.

3. With respect to the simplicity of the language it is relatively easy to create highly 
optimised machine code.

Only a few functions are written in C language, namely the function for dynamical alloca-
tion of memory (this feature is missing in FORTRAN 77), filtering of input data (in order 
that the very fast sorting C function qsort could be utilized), reading of input data records 
(C library functions for input and output are faster than FORTRAN’s) and computation of 
the convex envelope of points XYZ (the only non proprietary algorithm – see [S3]).

The source code was compiled with the GNU FORTRAN compiler g77 and GNU C com-
piler  gcc. Both compilers enable high optimisation both for machine code generation and 
for utilization of microprocessor architecture.

3.3 Program structure
3.3.1 Modularity
The program SURGEF implementing the ABOS method was designed as a set of modules 
performing individual parts of the solution. The groups of related modules are contained in 
these files:

SurgeF.f main FORTRAN module together with initialisation subroutines
ReadDat.f subroutines for data input and output
Nearest.f subroutine for the computation of the matrix of nearest points and matrix of 

distances

30



Interp.f subroutines for the interpolation 
Common.f common procedures and functions used in all other modules
CFunct.c functions written in C language.
Although the memory needed for individual matrices is allocated as a one-dimensional ar-
ray, all FORTRAN subroutines working with them use two-dimensional indexing, which is 
close to mathematical notation. Such trick is possible, because the arrays are passed into 
subroutines and functions by address and the FORTRAN compiler does not check compat-
ibility between formal and actual parameters. This approach is commonly used in FOR-
TRAN programs and enables to maintain and update the source code easily.

3.3.2 Memory allocation
As mentioned above, the memory for matrices and vectors is allocated dynamically, which 
is only possible using the C library function malloc. From this reason, the following C func-
tion callable from FORTRAN code was created:
// dynamical memory allocation for FORTRAN
void fmalloc_(int *mptr, int *nbytes) 
{void *ptr; int amount; amount = *nbytes;
 if((ptr = malloc(amount)) == ((void *)0)) {*mptr=0; return;}
 *mptr = (int)ptr; return;} 
The function fmalloc allocates a required amount of memory (nbytes) and assigns the 
pointer to the beginning of this memory into the variable mprt. If the memory cannot be al-
located, a zero value is returned. The underscore after the function name is required for 
linker, because the g77 compiler adds it after each subroutine or function name while the 
compiler gcc does not change function names.
In FORTRAN code the calling of fmalloc should look like:
CALL fmalloc(IAP,4*I1J1)     ! allocate memory for the matrix P
Here the IAP is a FORTRAN variable of type INTEGER*4 containing the address of the al-
located array after the calling of fmalloc. Then a subroutine declared for example as 
SUBROUTINE SMOOTH(P)
REAL*4     P(I1,J1)
.
.
.

can be called by statement
CALL SMOOTH(%VAL(IAP))
where the  %VAL(IAP) function returns the value contained by the variable  IAP, but the 
subroutine  SMOOTH considers it to be an address (FORTRAN assumes that parameters of 
subroutines and functions are passed only by address) which is all right, because IAP really 
contains an address assigned in the fmalloc function.

3.4 Description of selected algorithms
3.4.1 Implementation of filtering
As mentioned in section 2.2.1 Filtering of points XYZ in the second chapter, filtering may 
represent an efficiency problem. 

To test the condition (2.2.1) means to compare coordinates of all pairs of points XYZ. Such 
a problem is usually solved by nested loops with this pattern:
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for (i=1;i<n;i++)
  {for (j=i+1;j<=n;j++)
    {compare coordinates of point i and j}
  }
It means that 2/)1( −⋅ nn  comparisons are performed. If n is large, the computational time 
may  be  unacceptable.  Taking  into  consideration  the  efficiency  of  today’s  computers, 

10000050000 −≅n  is  a  critical  value  from this  point  of  view.  For  example,  filtering 
100000 points using this algorithm took 170 seconds on the testing computer.

A significant increase in speed occurs when the points XYZ are sorted according to the x co-
ordinates using a very fast standard C-library function  qsort (that is why this filtering al-
gorithm is one of the few algorithms written in C language). If the points XYZ are sorted ac-
cording to the x coordinate, the above loops can be changed like this:
for (i=1;i<n;i++)
  {j=i+1; 
   while ((j<=n)&&fabs(X[i]-X[j])<RS))
     {compare y-coordinate of point i and j; j++;}  
  }
In other words, if the points XYZ are sorted according to the x-coordinates, there is no need 
to compare point  i   with all points j=i1, , n but only with the points  j  having 

ji XX −  less than the resolution. Using this approach the time needed for filtering 100000 
points was reduced to 5 seconds.

An example of the filtering effect is displayed in the following figure. The input file con-
tains 100000 points laying on a spiral and 50000 points forming a rotated square. These 
points are displayed in blue while data obtained after filtering are displayed in black. The 
Filter parameter was set to 100.

 
Fig. 3.4.1a: Filtered data.

It is obvious that filtering preserves the shape of clustered data while isolated points remain 
untouched.

According to performed tests, the above described filtering algorithm is effective for up to 
300000 points – in such case the filtering process takes 20 seconds, which is still an accept-
able time.

Another improvement can be achieved by implementing the so called super-block search 
strategy (see [3]), which consists of the following steps:
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1. An ordinal number IS[L],L=1,…,n of the grid block is assigned to each point L 
(see the blue numbers in the next picture) using statements 
I=(X[L]-X1)/Dx+1;
J=(Y[L]-Y1)/Dy+1;
IS[L]=I+(J-1)*I1; 

2. Arrays IS, X, Y and Z are sorted according to values in the array IS. 

3. An array IN[I1*J1] is set so that it contains the number of points belonging to grid 
block K=1,..,I1*J1 and IN[0]=0. Then it is re-calculated (see the red numbers in 
the next picture) using the loop statement:
for (i=1;i<=I1*J1;i++) IN(i)=IN(i-1)+IN(i);

Fig. 3.4.1b: Super-block search strategy.

Now points within the grid block K=1,..,I1*J1 can be indexed directly in the range 
IN[K-1]+1,..,IN[K] and during filtration we need to search only points in the block 
containing point i and in the eight adjacent blocks.
The super-block search strategy is the latest algorithm, which has been implemented in the 
SURGEF program and now it is being tested. Preliminary tests show that 300000 points can 
be filtered within 2 seconds, 1000000 points within 4 seconds and 5000000 points within 8 
seconds.

The SurGe software package also contains another filtering algorithm implemented as a 
stand-alone utility GFILTR designed for pre-processing of a large amount of data.

Fig. 4.3.1c: GFILTR utility for pre-processing of a large amount of data.
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Filtering is performed in three steps:
1. Input data is read for the first time to set the minimal and maximal coordinates x1, 

x2, y1 and y2 of the domain D.
2. As parameters, the number of columns (i1) and rows (j1) of auxiliary regular rectan-

gular  mesh  are  specified.  The  size  of  the  mesh  blocks  is  calculated  as 
dx=x2−x1/i1−1  and  dx= y2− y1/ j1−1 .  Four  matrices  XF,  YF,  ZF 

and WF with i1 columns and  j1 rows are initialised to zero.
3. Input data is read for the second time. For each point ),,( iii ZYX  the following se-

quence of statements is performed:  
i=round((Xi-x1)/dx)+1
j=round((Yi-y1)/dy)+1
w0=WF(i,j)
w1=v0+1
XF(i,j)=(w0*XF(i,j)+Xi)/w1
YF(i,j)=(w0*YF(i,j)+Yi)/w1
ZF(i,j)=(w0*ZF(i,j)+Zi)/w1
WF(i,j)=w1

Using this approach the elements  XFi,j,  YFi,j and  ZFi,j contain average coordinates of all 
points falling into the mesh block i,j. These coordinates are written into an output file only 
if the weight WF i , j0 .
Figure 3.4.1d shows the result of the GFILTR utility applied for the above mentioned data 
example. Again, it is obvious that filtering preserves the shape of clustered data while isol-
ated points remain untouched.

 
Fig. 3.4.1d: Data filtered by GFILTR utility.

As for efficiency, the GFILTR utility filters 300000 points within 5 seconds and 5000000 
points within 40 seconds.

3.4.2 Degrees of linear tensioning
There are four degrees of linear tensioning (0-3) implemented in SURGEF. The formula for 
linear tensioning (2.2.6) can be expressed in this generalized form:

P i , j=Q⋅P iu , jvP i−u , j−v R⋅P i−v , juP i v , j−u/2⋅Q2⋅R
∀ i=1, , i1 , j=1, , j1 ; K i , j0

where the weights Q and R, depending on the degree of linear tensioning, are calculated as 
follows:
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Degree Q R L
0 2

,max )( jiKKL −⋅ 1 ))714,0107,0((7,0 maxmax KK ⋅−⋅

1 2
,max )( jiKKL −⋅ 1 ))714,0107,0((0,1 maxmax KK ⋅−⋅

2 )( ,max jiKKL −⋅ 1 )192,00360625,0(0,1 max +⋅ K
3 1 0 -

Formulas for the computation of the constant L are empirical and their role is to suppress 
the influence of Kmax.

The figure 3.4.2 contains a cross-section plot demonstrating the typical influence of the lin-
ear tensioning degree.

 
Fig. 3.4.2: Influence of the linear tensioning degree.

3.4.3 Smoothing and tensioning on grid boundary
The formulas for tensioning (2.2.5) and (2.2.6) and smoothing (2.2.7) are in fact the formu-
las for the computation of weighted average. For example in the case of smoothing, z-co-
ordinates at 9 nodes of the grid are included in the weighted average; however, on the grid 
boundary only 6 or 4 nodes are available for smoothing (see figure 3.4.3a), which has an 
undesirable influence on the generated surface – the contours tend to be perpendicular to the 
grid boundary.

Fig. 3.4.3a: Nodes included in smoothing       Fig.3.4.3b: Enlargement of grid

To suppress this phenomenon, SURGEF uses an enlarged grid. This grid enlargement is 
specified as a number of additional columns and rows symmetrically exceeding the original 
domain of the interpolation function – see blue lines in figure 3.4.3b where the grid size en-
largement is 5.
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3.5 Data compatibility with other systems
After thorough examination of other mapping and gridding software, it was decided to keep 
primary compatibility of input / output data formats with the Surfer software (see [S2]), be-
cause the majority of related software uses Surfer data format either directly or supports its 
import and export.
Namely it means, the SURGEF program reads points  XYZ from the ASCII files in Surfer 
format and is also able to create grids as ASCII files, which are compatible with Surfer 
grids (see section 3.8 Format of input and output files).
Moreover the graphical interface SurGe for the SURGEF program supports a lot of other 
commonly used map formats, as described in section 4.3 Supported map formats.

3.6 Map objects
In addition to points XYZ, the ABOS implementation supports other objects used for the 
definition of maps:

- Added points are the XYZ points added by the user in order to modify the shape of 
the resulting surface according to his / her concept.

- Spatial polylines are 3D polylines which are involved in the interpolation / approx-
imation process; they can be used namely for the settings of the boundary condi-
tions.

- Boundary is one or more polylines in the horizontal plane intended for the definition 
of the interpolation / approximation function domain.

- Faults are lines along which the resulting surface has to be discontinuous.
The implementation of the map objects is explained in the following paragraphs.

3.6.1 Added points
Added points are treated in the same manner as the points  XYZ; in other words, they are 
simply added to the sequence of the points XYZ.

3.6.2. Spatial polylines
A spatial polyline is defined by the x, y and z coordinates at each of its vertex point. In fact, 
SURGEF does not work with polylines directly – it works only with the points, which are 
evenly distributed along the polylines. The number of evenly distributed points is specified 
as a polyline parameter.

3.6.3 Boundary
A boundary is handled as a horizontal polyline. Its role is to define the domain of the inter-
polation / approximation function. If there is no boundary in the input data, the size of the 
domain (rectangular area) is given by the minimal and maximal coordinates of XYZ points. 
This size can be changed by a boundary – if a boundary exists and if it is involved in the in-
terpolation, the size of the rectangular area is given by the minimal and maximal coordin-
ates of the boundary points. The example of boundary use is in sections 5.2 Extrapolation 
outside the XYZ points domain and 5.6 Digital model of terrain.

3.6.4 Faults
A fault is a sequence of line segments (in the horizontal plane), at which the resulting sur-
face has to be discontinuous. The line segment of a fault is defined by the pair of points 
having specified x and y coordinates at each end. 
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The existence of faults affects the computation of the matrix NB, K and P according to the 
following rules (see the next figure):

- Elements of the matrix P corresponding to the nodes near the fault are not defined.
- Undefined nodes are involved in the computation of the matrix  K as if they were 

points XYZ.
- The ordinal number of the nearest point XYZ is assigned to the element of the matrix 

NB only if the point is not on the opposite side of the fault.
the points XYZ, as the following figure indicates:

Fig. 3.6.4: Computation of the matrices NB and K affected by the fault.

The above-presented rules ensure that the points involved in tensioning cannot lie on the 
opposite side of a fault.
During the tensioning or smoothing process, only defined elements of the matrix P are used 
for the computation of weighted average.

3.7 Limits of the actual compilation
The actual compilation contains several limits as for the maximal number of faults, bound-
aries and so on. 
The number of  XYZ points (including added points and the points generated from spatial 
polylines) was limited to 300000, but starting from version 6.50, it is limited only by avail-
able computer memory. The original limit was set with respect to an acceptable time for the 
filtering process (see section  3.4.1 Implementation of filtering). After implementation of 
the super-block search strategy, even millions of points can be filtered in reasonable time. 
The maximal number of vertices in one spatial polyline is 10000.
The maximal number of boundary polylines is 100 and the total number of all line segments 
creating a boundary is 10000. 
The maximal number of fault line segments is 1000.

3.8 Formats of input and output files
3.8.1 Convention for file names
The ABOS implementation uses a special convention for naming files containing input data. 
The file name must have the name in the form NAME.XXs, where the NAME is an arbit-
rary name of a project, the XX is a two character part of the extension indicating what kind 
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of data is contained in the file and the  s is a one-character suffix enabling to distinguish 
between related sets of map objects (for example layers). In this way the map objects are 
stored in ordinary ASCII files without requiring a database system. This convention is util-
ized namely by the SurGe Project Manager, as described in section 4.1 Project manager.

3.8.2 Points
The basic input file is an ordinary ASCII file which has a name in the form NAME.DTs, 
where  NAME is the name of the project,  DT is the extension indicating the type of data 
(points XYZ) and s is the suffix. Each row of the file has this format:
X  Y  Z  L
where real numbers X, Y and Z are x, y and z coordinates of the points  XYZ  and  L  is the 
label of the point containing max. 23 characters. Items in a row must be separated by at 
least one space. The file containing added points NAME.DBs has exactly the same format.
The basic input file is the only file, which can have comment rows starting with the charac-
ter # in the first column.

3.8.3 Spatial polylines
The file containing spatial polylines must have a name in the form NAME.LNs. The file 
has this format:     
N1 M1     
X Y Z     
X Y Z
.    
.     
N2 M2    
X Y Z     
X Y Z     
.
.     
Np Mp     
X Y Z     
X Y Z     
.     
.      
In the first row of each sequence of the spatial polyline points (vertices), there must be the 
number of points in the sequence (N1,N2,...,Np). The second and the next rows (X Y Z) 
contain x, y and z coordinates (real numbers) of polyline vertices separated by at least one 
space. The number of polyline vertices (Ni) is limited to 10000.
M1,M2,...,Mp are the numbers of internal points (see 3.6.2 Spatial polylines). 

3.8.4 Boundary
The file containing boundary polylines has a name in the form NAME.HR. There is no suf-
fix because the boundary is expected to be common for all maps in the project. The file has 
this format:     
N1     
X Y      
X Y     
.     
.    
Nb     
X Y     
X Y     
.     
.      

In the first row of each sequence of the boundary points, there must be the number of points 
in the sequence  (N1,N2,...,Nb). The second and the next rows (X Y) contain x and y co-
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ordinates (real numbers) of the boundary points separated by at least one space. The overall 
number of boundary points (N1+N2+...+Nb) cannot exceed 10000. The number of boundar-
ies (b) is limited to 100.     

3.8.5 Faults
NAME.ZL is the name of an ASCII file containing coordinates of initial and end points of 
the line segments, at which the created surface has to be discontinuous. Similarly as in the 
case of the boundary there is no suffix, because the faults are expected to be common for all  
maps in the project. The file has this format:
X1 Y1 X2 Y2
X1 Y1 X2 Y2
.
.

The coordinates must be separated by at least one space. The number of lines in the file can-
not exceed 1000. The line segments can be connected and so they can form a polyline. They 
are often referred to as faults.

3.8.6 Grids
The output ASCII file containing the grid has the name NAME.GRs. It contains the mat-
rix i1xj1 of z-coordinates in the nodes of the grid. The format of the file is compatible 
with Surfer (Golden Software) grid file format:
DSAA
i1 j1
x1 x2
y1 y2
z1 z2
P1,1   P1,2   P1,3  .... P1,i1
P2,1   P2,2   P2,3  .... P2,i1
.       .                    . 
.       .                    .

Pj1,1   Pj1,2    Pj1,3  .... Pj1,i1

In addition to an ASCII grid file, SURGEF creates a binary grid file named NAMEf.GRs 
with the following records:
i1 j1 x1 x2 y1 y2 z1 z2
P1,1   P1,2   P1,3  .... P1,i1
P2,1   P2,2   P2,3  .... P2,i1
.       .                    . 
.       .                    .

Pj1,1   Pj1,2    Pj1,3  .... Pj1,i1

The binary grid file is approximately five times smaller than the ASCII grid file and it is 
used for communication between SURGEF and the graphical user interface SurGe.

3.9 Interface for user applications
The  program  SURGEF,  which  implements  the  interpolation  /  approximation  method 
ABOS, can be used as an external program called from user application, for example: 

• Using the system command in C language 
• Using the Shell function in Microsoft Visual Basic 
• Using the WinExec function, which is available in standard Windows library KER-

NEL32.DLL. 
To run SURGEF.EXE in this way, the application must provide: 
1. Input file(s) for SURGEF.EXE (at least the basic input file must exist in the working dir-
ectory). 
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2. The application must create the ASCII file PAR.3D (parametric file for SURGEF.EXE) 
with items described in the following table:

Row Value Example  Meaning

1. String ex1 Name of basic input file

2. Character A One-character suffix

3. Y / N / C [,scale] C,1.2

Boundary has to (Y) / does not have to (N) be used. 
If C is used, the boundary will be created as a convex envel-
ope of input points. The following optional number can then 
be used as a scale of boundary (default value is 1.1).

4. Y / N N Faults have to (Y) / do not have to (N) be used

5. Y / N N Additional points have to (Y) / do not have to (N) be used

6. Y / N N Polylines have to (Y) / do not have to (N) be used

7. Y / N Y Basic points have to (Y) / do not have (N) to be used

8. 0-9999 500 Value of filter

9.
5-99 [, 0 / 5-5555,
           0 / 5-5555]

99, 300, 200 Grid enlargement, gird dimension(s)

10. 0-4, 0 / 1 1, 1 Degree of linear tensioning, fast convergence off (0) / on (1)

11. 0-99, 0-999.99 [,0-9999] 1, 0.5, 50 Precision, smoothing, number of smoothing cycles

12. Y / N N Blank (Y) / do not blank (N) grid outside the boundary

13. Y / N N Create (Y) / do not create (N) NP file (see 4.2.11.2)
14. Y / N Y Create (Y) / do not create (N) ASCII grid file

16. [file-name-xy] points.xy Input file containing x and y coordinates of points as the first 
two items

17. [file-name-xyz] points.xyz Output file containing records from file-name-xy + surface 
values at specified points

Values in brackets are optional. If a numeric parameter is missing, it will be estimated by 
SURGEF internally. 
If there are two or more items in the row, they can be separated by a comma and spaces or 
only by spaces. 
If both grid dimensions are zero, they will be estimated by SURGEF internally. If the first 
(dimension in x-direction) is greater than zero and the second (dimension in y-dimension) is 
zero or is missing, the second dimension will be estimated by SURGEF internally according 
to the first dimension. 
If the C option is used in the third row, the new boundary created as a convex envelope will 
replace the old boundary, if it exists. Practical usage of the convex envelope is described in 
section 5.6 Digital model of terrain. 
If a boundary has to be used, the domain rectangle D of the interpolation function is set ac-
cording to boundary points and not according to the points XYZ. 
3. SURGEF.EXE can be called from the application – for example by the following com-
mand in C language (do not forget the N parameter, which means "normal" interpolation; 
other interpolation modes are used for development purposes).
system("C:\SurGe\SURGEF.EXE N");
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3.10 Running SURGEF.EXE
Even if SURGEF is intended for running from another applications (namely from GUIs), it 
can also be run in the console window like this:
E:\Fprog\Surgefr\data>SURGEF N
In the working directory there must be the parameter file PAR.3D (see the previous section) 
and at least a basic input file containing points XYZ. If there are other files containing other 
map objects (polylines, faults, boundary), they will be involved in interpolation depending 
on the information contained in the parameter file.
The dump of a typical console screen running SURGEF.EXE is shown in the following 
frame:

 E:\Fprog\Surgefr\data>SURGEF N

 SURGEF - v.6.30
 (c) M.Dressler 1996 - 2007
 Compiled with GNU Fortran G77 v. 3.4.2

 READING DATA: --
 Filtering:  13504 --- 13411 ---- 13156 ------- 12253 -------------- 9643
 NUMBER OF INPUT POINTS WAS REDUCED FROM:   13504
                                      TO:    9643
 READ FILE .GRD? (Y/N) [N]
 GRID SIZE IN X-DIRECTION (MIN.  500) [ 500]: 600
 GRID SIZE IN Y-DIRECTION (MIN.  348) [ 417]:
 GRID SIZE ENLARGEMENT [ 62]:
 NEAREST POINTS: ----------------------------------------------
 FAULTS CHECKING: ---------------------------------------------------------
 Dynamically allocated memory:     10.60 MB
 DR=0.00174  DF=0.02371  DR/DF=0.07358
 NP= 63  NQ= 150  JH= 33  GL=  1.20279877
 SMOOTHING [ 99]: 100

 *****************
 * APPROXIMATION *     (Press Esc to stop iterations)
 *****************

 INTERPOLATION: OK
 TENSIONING: ----------------------------
 TENSIONING: ---------------------------
 SMOOTHING:  -----
 GRADIENT:   ----------------------------------------------------------
 SMOOTHING:  ---------------------------------------------

  Average deviation =   1.48878503
  >>>>>>>>>>>>> RELATIVE PRECISION >>>>>>>>>>>>>  4.986 [%] - POINT 9316

 INTERPOLATION: OK
 TENSIONING: ---------------------------
 SMOOTHING:  -----

  Average deviation =   0.136240065
  >>>>>>>>>>>>> RELATIVE PRECISION >>>>>>>>>>>>>  0.872 [%] - POINT 9497

 Time elapsed:   4.37  /   4.00  [sec]

 BINARY GRID IS BEING CREATED:
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In the rows containing the text in red (prompts), SURGEF offers default or suggested val-
ues and expects a response from the user. The user can leave the suggested value by press-
ing the Enter key or can enter a new value (examples can be seen in blue).
If  Y (yes) is answered to the prompt READ FILE .GRD? (Y/N) [N], the existing grid 
file is read as the initial interpolation / approximation function. It means that the vector DZ 
is not initialised as vector Z in the first step of the interpolating algorithm (see 2.2 Interpol-
ation algorithm), but its values are computed as ),( iiii YXfZDZ −= . Moreover, the read 
grid can be smoothed first,  because in this case the following additional prompt is dis-
played:
SMOOTHING OF READ GRID [  0]:
The default value 0 means that no smoothing will be performed.
The following two prompts 
GRID SIZE IN X-DIRECTION (MIN.  500) [ 500]: 600
and
GRID SIZE IN Y-DIRECTION (MIN.  348) [ 417]:
are intended for changing the default grid size suggested by SURGEF. The grid size in the 
y-direction is suggested so that the difference between  Dx and  Dy is minimal (see  2.2.2 
Specification of the grid). If any of the grid sizes are smaller than the minimal value, there 
is a high probability that the iteration process will not converge.
The  GRID SIZE ENLARGEMENT [ 62]: asks  for  the  number  of  grid  rows  and 
columns, which are used for enlarging the interpolation function domain (see 3.4.3 Smooth-
ing and tensioning on grid boundary). The value suggested by SURGEF should be left un-
changed – changing this value is intended only for development purposes. 
The last prompt SMOOTHING [ 99]: 100 enables to change the number of smoothing 
cycles. The suggested value is sufficient for obtaining a smooth surface, but for example if 
a trend surface has to be obtained, the value may be higher (even several times). 
To run SURGEF without waiting for prompt entries, i.e. automatically using suggested val-
ues, the second command line parameter A can be used:
E:\Fprog\Surgefr\data>SURGEF N A
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Chapter 4
Graphical user interface
The goal of the graphical user interface design is to create an appropriate environment as a 
superstructure above the ABOS method implementation satisfying the following require-
ments:

1. management of projects
2. transformation of map objects coordinates
3. specification of interpolation parameters and running SURGEF.EXE
4. 2D and 3D display of surfaces, computation and display of isolines and display of 

cross-sections
5. digitisation of map objects
6. mathematical operations with surfaces
7. computation of volumes between surfaces

The first requirement is implemented in SurGe Project Manager described in the first sec-
tion of this chapter.

Requirements two to six are implemented in SurGe, the main program creating the graphic-
al user interface. 

The seventh requirement is solved as a stand-alone utility VOLUME.

4.1 Project manager
SurGe Project Manager (SPM) is a simple application, which enables: 
- to manage projects and maps in an easy and comfortable way (create a new project, 

modify or delete an existing project, add comments to the project or map and so on) 
- to select map objects, which have to be included in the interpolation process
- to select interpolation parameters separately for each map in the project
- to run the SurGe graphical interface for a selected map
- to edit the data of map objects (using the stand-alone editor FMEW or using an editor 

selected by the user) 
- to calculate volumes between two surfaces (using the stand-alone utility VOLUME)
SPM is created as a dialog-based Windows application: 
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Fig. 4.1: SurGe Project Manager – the dialog-based application for managing SurGe pro-
jects.

The usage of SPM is quite intuitive and does not need a detailed description. Just a few 
points should be emphasized: 
- The description of projects is saved in files with extension .PRO. The name of a pro-

ject is the name of the corresponding file – that is why the project name must only con-
tain allowed file name characters (for example characters * or ? are not allowed) and 
the name should be unique.

- The project file EXAMPLES.PRO is a part of the installation and contains two sub-
project examples (Example 1 and Example 2) related to maps in the EXAMPLES dir-
ectory.

- Subprojects are managed according to the subproject title. This means that the subpro-
ject title must be unique (subprojects with the same title are not allowed). The same 
rule holds for the map title.

- The path to the subproject directory must end with the back slash character "\" and 
should  be  absolute  (for  example  C:\surge\examples\).  The  project  file  EX-
AMPLES.PRO uses the relative path (.\examples\) in order to address files installed 
in the directory EXAMPLES.

- If a multiple line comment has to be entered, the shortcut key  Ctrl+Enter must be 
used to start a new line. The key Enter has another function – see the next point.

- If the project, subproject or map has been changed, the main window bar indicates it 
with the text "[modified]". Before starting SurGe (using the button "Run SurGe") or 
before switching to an already existing window running SurGe, it is recommended to 
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save the project using the button "Save Project" or by the Enter key – then SurGe will 
read  actual  map  parameters  immediately  after  a  new run  or  after  switching  to  an 
already existing window running SurGe. In this way, the user can comfortably experi-
ment with interpolation parameters.

- If the grid size in the x-direction is zero (in Map settings), SURGEF suggests an ap-
propriate value. If the grid size in the x-direction is positive and the grid size in the y-
direction is zero, SURGEF accepts the first value and suggests an appropriate second 
value. If both values are positive, SURGEF accepts them.

- The "Edit" button can be used for editing files containing map objects. The default ed-
itor is FMEW, but the "Config" button enables to enter the full path to another editor 
suitable for the user.

- The button "Vol. calc" runs the stand-alone program VOLUME for volume calcula-
tions – see section 4.4 Calculation of volumes.

- The last row of the SPM dialog box shows a short hint for a selected dialog item.

4.2 SurGe
SurGe is the main graphical program providing full interface to the ABOS implementation. 
It can be run from SurGe Project Manager or directly using command line statement with 
arguments in the form:
C:\MAPS>SurGe NAME s
where the NAME is the name of the project and s is the suffix (see paragraph 3.8.1 Conven-
tion for file names).
SurGe works in several levels described in the subsequent scheme.

The next paragraphs in this section describe all essential functions of SurGe.

4.2.1 Display of map objects
In the basic move / zoom display there are points XYZ as blue dots. If boundaries and / or 
faults and / or polylines exist, they are displayed too. The boundaries are displayed as thick 
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red lines, faults as thin green lines and polylines as thin orange dotted lines. In the move / 
zoom mode, the display can be moved using cursor keys and zoomed by shortcut keys 
PgUp or PgDn. If only basic objects have to be moved / zoomed, Ctrl with these keys can 
be used too. The step of moving and zooming can be changed with shortcut keys "1", "2", 
"3", "4" or "5".
Additional displays can be performed using the items in the Display menu. 
- Labels and  z-coordinates of  XYZ points can be displayed using the menu item  La-

bels (shortcut key N) Z-coordinates (shortcut key K), respectively.
- The menu item Color scale (shortcut key Alt+S) displays points (and labels and / or z-

coordinates, if they are displayed) in colours indicating their z-values.
- Mesh scale (shortcut key Ctrl+S) enables to display a square mesh showing distances 

(if the mesh has to be labelled, shortcut key Ctrl+E can be used). The suggested size 
of the mesh can be altered by the user in the presented dialog. 

- Refresh (shortcut key R) is intended for restoring the basic display. 
- Objects in the background (see  4.2.8 Background) can be displayed using the Back-

ground menu item (shortcut key O). 
- Background  colour  can  be  switched  between  black  and  white  using  the  menu 

item B/W background colour (shortcut key Ctrl+R). 
- If there are cross-sections saved in the file NAME.RZY (see 4.2.7 Cross-section dis-

play), they can be displayed using Saved cross-sections  (shortcut key Ctrl+C).

4.2.2 Transformation of coordinates
The coordinates x and y of the basic map objects (points, boundaries, faults and polylines) 
can be transformed. Transformation functions are contained under the main menu Trans-
formation:
- The first one (Move to beginning of coordinate system, shortcut key Alt+0 (zero)) 

moves coordinates of the basic map objects into the beginning of the coordinate system 
– this means that the minimal x-coordinate and the minimal y-coordinate is zero. 

- The next  two,  Transformation x[i]=MaxX-x[i]  (shortcut  key  Alt+Z)  and  Trans-
formation y[i]=MaxY-y[i]  (shortcut key  Alt+Y), mirrors map objects according to 
the x axis or the y axis respectively.

- Coordinates x and y can be interchanged using the item Interchange x and y coordin-
ates (shortcut key Alt+Z). 

- All objects can be rotated - counter clockwise using the menu item Rotation counter-
clockwise (shortcut key Alt+U) or clockwise using the menu item Rotation clockwise 
 (shortcut key Ctrl+U).

- The Scaling and translation menu item invokes the dialog box enabling to scale and 
translate all coordinates by specified constants.

- The last item Save objects is intended for saving all objects into corresponding files 
(see 3.8 Formats of input and output files).

4.2.3 Interpolation
The main menu item Interpolation enables to specify map objects, set interpolation para-
meters,  run the interpolation process,  compute isolines and so on. The subsequent para-
graphs describe these functions.
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4.2.3.1 Objects for interpolation
The first item in the  Interpolation sub-menu contains a selection of map objects, which 
have to be entered into the interpolation process. They are Points, Added points, Polylines, 
Faults and Boundaries (see section 3.6 Map objects). 

4.2.3.2 Interpolation parameters
The quality of the surface generated by the program SURGEF can be changed in the dialog 
box invoked by Interpolation parameters menu item:

 
Fig. 4.2.3: Dialog box for the specification of interpolation parameters.

The first parameter Filter (the default value is 500) is intended for reducing input points if 
the number of points is very large and if there are points with a small horizontal distance 
between them. Usage of the parameter Filter was explained in paragraph 2.2.1 Filtering of 
points XYZ.
The parameter Smoothness (see paragraph 2.2.7 Smoothing) enables to control smoothness 
of a generated surface. The larger the value, the sharper interpolation is obtained. Typical 
values are: 
0,00 - 0,30 for smooth interpolation 
0,40 - 0,60 for normal interpolation (default value is 0,50) 
0,70 - 1,50 for sharp interpolation.
A sharp/smooth model at local extremes can be improved by extending the smoothing para-
meter. Beginning from SurGe version 5.50, the smoothing parameter can have two formats:
1) number 0,00 - 9,99, which is equivalent to the above described smoothing parameter  
2) number 100,00 - 999,99, where the first two digits divided by 10 determine a so called 
shape factor, which has an influence on the shape of the surface in the surrounding of sharp 
local extremes. The smallest value 1.0 means, the shape will not be changed and any greater 
value (1.1 - 9.9) means that the local extreme will be sharper. The remaining digits have the 
original meaning. 

Remark: If the smoothing parameter has the first format, the shape factor has the default 
value 1.0.
Parameter  Accuracy (the default value is 1) is the percentage value from the difference
z2−z1 . The role of this parameter was described in paragraph 2.2.8 Iteration cycle. 

Enlargement is  the grid  size enlargement  described in  section  3.10 Running SURGE-
F.EXE. If it is greater than 98, the program SURGEF computes it internally.
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The parameter  Linear tensioning enables to set the degree (0-3) of linear tensioning (see 
2.2.6 Linear tensioning and 3.4.2 Degrees of linear tensioning). The default value is 1.
In most cases the number of iterations can be decreased (see 2.2.8 Iteration cycle) by the 
transformation a⋅P i , jbP i , j , where constants a and b minimize the term

∑
i=1

n

a⋅f  X i , Y ib−DZ i
2

The resulting surface is somewhat smoother, but the number of iterations is decreased by 
cca 30%. The check button Faster convergence enables this feature.
The pull-down list Pre-defined parameters contains the list of interpolation / approxima-
tion modes and enables to set appropriate parameters for a selected mode. The modes and 
pre-defined parameters are:

Mode  Filter Smoothness Accuracy Linear tensioning
Trend Surface 30  0,1  90  0  
Smooth approximation 200  0,2  20  0  
Smooth interpolation 500  0,2  1  1  
Normal interpolation 500  0,5  1  1  
Sharp interpolation 500  200,7  1  1  
LES interpolation 1000  -0,5  1  1  
Digital model of terrain 1000  200,7  1  3  

Important note: The Trend surface and  Smooth approximation set a special multiplier for 
the SMOOTHING parameter otherwise estimated by SURGEF. To deactivate this setting, 
the Normal interpolation item should be selected.

4.2.3.3 Interpolation
The interpolation / approximation process is started using the  Calculate grid menu item. 
Firstly, the parameter file PAR.3D is created and then SURGEF is run in a new console 
window. The content of a typical console window running SURGEF is described in section 
3.10 Running SURGEF.EXE.

4.2.3.4 Increasing the density of the grid
There is the possibility to double the grid (using the menu item Double grid) once or more 
times. Z-values of newly created grid nodes are computed by means of quadratic interpola-
tion. A doubled grid provides better isolines and it can be used for the creation of an extra 
smooth surface. Of course, each doubling creates a file four times greater in size.

4.2.3.5 Calculation of isolines
Before displaying, isolines must first be calculated. The calculation is invoked by the menu 
item Calculate isolines. The following dialog appears:
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The meaning of individual items in this dialog is apparent, but four points should be em-
phasized:
- Only the isolines having a level divisible by the divisor will be labelled.
- If a small difference between isolines is selected, the calculation can last from several 

seconds to minutes.
- The calculated isolines are stored in the binary file NAME.VRs where the s is a suffix 

(see paragraph  3.8.1 Convention for file names) and then they are immediately dis-
played.

- If the surface is later created with different interpolation / approximation parameters, 
the isolines should be recalculated to correspond to the actual surface.

An example of printed isolines is in figures 2.4.2b, 2.4.2c and 2.4.2d.

4.2.3.6 Blanking grid outside the boundary
The function Blank grid outside boundary is intended for cancelling values of the grid 
nodes located outside the boundary. To obtain isolines only inside the boundary, the calcu-
lation of isolines must be then performed again. Examples of this function are in sections 
5.4 Wedging out of layer and 5.6 Digital model of terrain.

4.2.3.7 Cutting off extreme values
The function Substitute below enables to substitute all z-values of the surface, which are 
less than a specified constant, by this constant. For example, negative values of the grid 
nodes can be substituted with zero. A similar function has the menu item Substitute above. 
An example of this function is in section 5.1 Zero-based maps.

4.2.3.8 Mathematical calculations with grids
The menu item Math calculation with grids starts a dialog box enabling to perform some 
calculations with all nodes of grids. It is assumed that the first operand is the actual surface 
and the second one is a previously created surface defined by the suffix. If the second oper-
and is not defined (the suffix is empty), it is assumed to be a constant (specified in the fol-
lowing dialog box). The result of the operation is indicated by one character with the fol-
lowing meaning:

Operand  Result
~  Negation
+  Addition
-  Subtraction
*  Multiplication
:  Division

m  Minimum
M  Maximum
a  Average
$  the first operand; if the second is greater than the first, then average
%  the second operand; if the second is greater than the first, then average
w  weighted average (the weights are specified in the following dialog box)
d  derivative computed as the size of gradient vector  
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Examples of these functions can be found in sections 5.4 Wedging out of a layer and 5.5 
Maps of thickness and volume calculations.

4.2.3.9 Data analysis
The Data analysis menu item runs only the first part of SURGEF.EXE to get essential in-
formation about filtering, grid sizes and expected maximal gradient. Then it displays the 
following dialog box:

 

The first and second items inform about the number of points before and after the filtration 
process. If the grid size is smaller than the Minimal grid size set by filter, there is a high 
probability that the iteration process will not converge. The Suggested grid size is a grid 
size suggested by SURGEF.EXE. The Comment contains a verbal description of data ana-
lysis results and some suggestions. 
The edit box Filter enables to change the actual setting of the filter (and, for example, to 
run Data analysis again to observe its influence). The Target grid size has two purposes: 
1. If interpolation with a trend surface is performed, this grid size will be used without re-
spect to the state of the Use check box. 
2. If the check box Use is switched on, this grid size will be used for the next interpolation / 
approximation and for the next data analysis. 
The items Normal, Linear, Convex and Auto in the Trend surface group box are intended 
only for interpolation with a trend surface (see the next paragraph).

4.2.3.10 Interpolation with a trend surface
Interpolation with a trend surface runs SURGEF.EXE two or three times. The first run 
creates a trend surface with a small grid having the following properties:
- the grid size of the small grid is between 80 and 160 or between 40 and 80 or between 

20 and 40 – it depends on the selection of the  Preservation of extrapolation trend 
parameter 1, 2 or 3 in the provided dialog box

- the Target grid size (see the previous section) is the 2n multiple of the small grid size.
The second (third) run reads the created grid of the trend surface doubled n-times and then 
performs a modified interpolating algorithm as described in section 3.10 Running SURGE-
F.EXE. Using this procedure the trend surface is involved in the interpolation, meaning that 
the resulting surface keeps a proper trend in areas without points. It is recommended to per-
form data analysis before interpolation with a trend surface and to set a desired Target grid 
size.
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An example of interpolation with a trend surface is in paragraph 2.4.3 Conservation of an 
extrapolation trend and in section 5.2 Extrapolation outside the XYZ points domain.

4.2.4 Display of surface
2D displays of the created surface can be performed using the following items in the Dis-
play menu. 

- Isolines  can  be  displayed  (assuming  that  they  were  calculated)  using  the 
item Isolines or by the shortcut key I. 

- The surface can also be represented as a colour raster map using Colour Map (short-
cut key C).

- The menu item Shadowed relief (shortcut key Alt+Q) enables to display a shadowed 
colour map improving the 3D feel of the display (see figure 4.2.4); the angle and in-
tensity of the shadow is specified in the presented dialog.

- The colour of the base objects (points XYZ,  labels,  z-coordinates, boundaries, faults 
and polylines) can be switched using Change colour (shortcut key Ctrl+A) in order to 
achieve better visibility of these objects on the colour map. 

- There are three items related to the gradient display. The first one, Gradient in nodes, 
shows gradient as short oriented line segments starting at the nodes of the grid. The 
second  one, Gradient  in  isolines,  shows  similar  line  segments  starting  along  the 
isolines  (only if isolines have been calculated). In both cases the user can change (in 
the provided dialog box) the multiplier constant (default 100) specifying the length of 
the line segments and the frequency (default 2). For example, frequency=2 means, the 
gradient line segments will start in every second node. When the function Gradient 
lines is selected, the program enters digitisation mode. In this mode the cursor has the 
shape of a little cross and the cursor keys move the cursor (and not the map). The 
gradient lines (starting from the cursor position) can be displayed using the shortcut 
key Alt+G.

 
Fig. 4.2.4: Difference between colour map and shadowed colour map display.

4.2.5 3D display
The menu item Display / 3D view is intended for displaying and viewing the created sur-
face in 3D from different angles and different elevations. In this case the surface is firstly 
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stored to the file NAMEF.GRs and then is read again. Before reading the surface, there is a 
possibility of changing the step of reading node values. The default step value is 1, which 
means, that all grid nodes will be displayed. A value of 2 means, that every other grid node 
will be displayed and so on. Higher values enable to display a sparser grid.

Cursor keys can be used for moving the 3D view around the screen, shortcut keys  PgDn 
and PgUp are intended for zooming.

In the 3D view mode there is a special menu having the following items: 

- The surface can be displayed without colours (Display wireframe surface, shortcut 
key S), with colours (Display colour surface, shortcut key C) or as a shadowed colour 
surface: 
- Shortcut key E displays the surface with pure colours and clears all shadows.
- Shortcut key Alt+Q adds shadows with angle and intensity specified in the presen-

ted dialog. It  can be used several times with different angles and intensities to 
achieve nice lighting effects.

- Shortcut key W displays the surface with the actual settings of shadows (after rota-
tion, zoom, …). 

- The horizontal angle of the view is changed by  Rotate counterclockwise  (shortcut 
key A) or Rotate clockwise (shortcut key Shift+A). 

- The vertical angle can be changed by  Rotate up  (shortcut key  B) or  Rotate down 
 (shortcut key Shift+B). The items Increase z-scale (shortcut key Z) and Decrease z-
scale  (shortcut key Shift+Z) are intended for increasing and decreasing the superelev-
ation, respectively. 

- The item Display / hide labels  (shortcut key K) switches on/off the display of point 
labels.

- Background  colour  can  be  changed  using B/W  background colour  (shortcut  key 
Ctrl+R).

Step of angles, moving and zoom can be changed with shortcut keys "1", "2" and "3". The 
horizontal and vertical angles of view can also be changed by clicking and holding the left 
mouse button and moving the mouse.

4.2.6 Digitisation
Digitisation is intended for manipulating basic map objects. After selecting one of the items 
Points,  Boundaries,  Faults or  Polylines in the menu Digitisation, the program enters di-
gitisation mode with a special menu. In this mode the cursor has the shape of a little cross 
and cursor keys change the position of the cursor (and not the position of the map as in the 
basic move / zoom display mode). The step of the cursor movement can be changed with 
shortcut keys "1", "2", "3", "4" or "5". Of course, the location of the cursor can be changed 
using the mouse too. While the cursor is being moved, the main window bar shows the co-
ordinates of the cursor.

4.2.6.1 Points
The menu Points enables to add or delete points XYZ or change their z-coordinate. A new 
point is specified by the cross cursor position when the left mouse button or the shortcut key 
B is pressed. The point next to the cursor position is deleted using the right mouse button or 
the shortcut key Ctrl+B. The shortcut key Shift+B is intended for setting a new z-coordin-
ate of the point, which is next to the cursor position.
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4.2.6.2 Boundaries
The menu item Boundaries is intended for creating and correcting boundaries. Boundaries 
are handled as a horizontal polyline. 
The shortcut key Ctrl+H ends the definition of one boundary and starts a new one. A new 
point of the boundary polyline (including the first one) is defined by the position of the 
cursor when the shortcut key H is pressed. The last entered point can be deleted using the 
shortcut key  D. The shortcut key  U is intended for closing the boundary (for creating a 
boundary as a closed curve). Any point of the boundary can be marked using the shortcut 
key Shift+H and then moved to a new position by the shortcut key M. The last item under 
the menu  Boundaries creates a boundary as a convex envelope (convex hull) of points 
XYZ. The number entered in the following dialog box enables to scale the convex envelope. 
Using this feature the size of the interpolation function domain can be changed and grid val-
ues outside of the convex envelope can be removed – see section 5.6 Digital model of ter-
rain.

4.2.6.3 Polylines
Spatial polylines can be digitised using the menu Polylines. 
The shortcut key Ctrl+L ends the creation of one polyline and starts another. A new point 
is defined using the shortcut key L, the last entered point can be deleted using the shortcut 
key D. As in the case of the boundary, the polyline can be closed using the shortcut key U. 
When  defining  a  new  point,  the  corresponding  z-coordinate  must  be  specified  in  the 
provided dialog box. If the z-coordinates of the polyline are to be the same, there is the pos-
sibility to predefine a constant z-coordinate using the shortcut key F. This function can be 
cancelled using the shortcut key Ctrl+F. 
Any point of the polyline can be marked using the shortcut key Shift+L and then moved to 
a new position by the shortcut key M.  
If a polyline is created, it is necessary to set its number of internal points. In fact, SURGEF 
does not work with polylines directly – it works only with the points, which are evenly dis-
tributed along the polyline. To specify the number of these points, move the cross cursor 
near the polyline and press the shortcut key  P. Then in the provided dialog box enter the 
number of internal points (typical values are 50 - 200).

4.2.6.4 Faults
The menu item Faults enables to edit sequences of line segments (in horizontal plain), at 
which the resulting surface has to be discontinuous. Each fault is defined by a pair of points. 
A new point of the fault  is specified by the cursor position when the shortcut key  Z is 
pressed. The fault can be deleted using the shortcut key D – the one whose centre is closest 
to the cursor position. The position of the fault end point can be changed by the shortcut key 
Shift+Z.

4.2.6.5 Isolines
In  the digitisation mode there  is  also the possibility to  modify isolines.  The first  func-
tion, Mark isoline  (shortcut key  X), serves for selecting an isoline. After  selection, the 
isoline is represented by a sequence of white points. If the display is (due to operations) 
damaged, it can be restored using the menu item Redraw modified isoline  (shortcut key 
A). 
The selected isoline can be smoothed (Smooth isoline, shortcut key S) as a whole, or par-
tially (Smooth between points, shortcut key V) between the points selected using the menu 
items Mark first point  (shortcut key Alt+1) and Mark second point (shortcut key Alt+2). 
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There  is  also  the  possibility  to  mark  a  single  isoline  point (Mark point,  shortcut  key 
Shift+I) and to move it (Move point, shortcut key M). A certain number (the number can 
be changed using Change number n, shortcut key Ctrl+Q) of isoline points can be moved 
by Move  n  points (shortcut  key  Q).  The  modified  isoline  can  be  saved  to  the  file 
NAME.VRz using  the  menu  item Save  modified  isoline  (shortcut  key  Ctrl+I). Write 
marked isoline (shortcut key W) enables to store the selected isoline as the ASCII file IZ.$
$$.

4.2.6.6 Cross-sections
The menu Cross-section enables to specify a polyline in the plane (x,y), which defines the 
cross-section through the created surface. The first or next point of the cross-section can be 
specified using the menu item Point of cross-section line (shortcut key G). Points are dis-
played in red. A polyline connecting the red points is displayed using the menu item Dis-
play cross-section line (shortcut key E). All specified cross-section points can be deleted 
by Delete specified cross-section  (shortcut key Ctrl+G) and then a new cross-section can 
be defined. In the cross-section mode (see below), there is a possibility to save the position 
of the cross-section and name it with a single letter. The function Select saved cross-sec-
tion (shortcut key Shift+G) enables to select one or more saved cross-sections. When the 
cross-section  is  defined,  the  shortcut  key Enter is  used  for  creating  the  cross-section 
through the surface(s) and entering cross-section mode.

4.2.7 Cross-section display
Cross-section mode is invoked by the menu item Cross-section / Display cross-section 
(shortcut key Enter) in the digitisation mode. The following dialog box appears:

 
The suffix convention (see paragraph 3.8.1 Convention for file names) enables to create a 
cross-section through several surfaces (layers). In the presented dialog box, the suffix of the 
surface and a short description can be specified. The cross-section is constructed through all 
specified surfaces and displayed in a 2D plot (see for example figure 2.3). 
There is a special menu in the cross-section mode. The title of the plot and description of 
axes can be modified using menu items Graph title (shortcut key N), Description of x axis 
 (shortcut key X) and Description of y axis  (shortcut key Y). The range of the y axis can 
be changed by Change range of y axis (shortcut key Ctrl+Y). 
The last menu item, Save cross-section (shortcut key U) enables to save the position of the 
cross-section polyline to the file NAME.RZY for later use in the digitisation mode (see the 
previous paragraph). The name of the cross-section must be specified as a single character 
A-I.

54



4.2.8 Background
In some cases it is useful to display texts and some characteristic terrain lines and / or ob-
jects to improve orientation in the map. For this purpose, there is a special digitisation level 
named Background under the menu Digitisation.  Objects  of  background are handled as 
polylines and the following functions (contained in the special menu) for creating, changing 
or deleting objects from background can be used:
Start new object (Ctrl+B)
  - ends construction of the current object and starts construction of a new one.
New point of object (B) 
  - a new point of a polyline is specified at the cursor position.
Delete last point  (D) 
  - the last specified point is deleted.
Close polygon  (U) 
  - the next point will be at the same position as the first point of the polyline.
Mark point  (Shift+B) 
  - change the colour of the nearest point of the polyline to the cursor to white.

Move point  (M) 
  - move marked point to a new position.
New text (T) 
  - specify text string, font size, font thickness, font colour and text orientation.
Change text (Shift T) 
  - change text string, font size, font thickness, font colour and text orientation.

Three functions are intended for manipulation with whole objects:

Select object/text (S) 
  - select / unselect the object next to the cursor. The selected object is displayed in purple.
Move selected object/text  (Ctrl+M) 
  - move whole object; the moving vector is given by the marked point and the cursor posi-
tion.
Delete selected object/text  (Ctrl+D) 
  - delete selected object.

All background objects can be saved to the file NAME.BG with the last menu item Save 
background (shortcut key W).

4.2.9 Finite difference model grid
The function Model grid in the menu Digitisation enables to create or to modify an irregu-
lar rectangular grid for a mathematical finite difference model, for example MODFLOW. 
The program switches into a special digitisation mode with its own menu. In the menu there 
is a list of shortcut keys, which can be used for creating an irregular rectangular grid:
Add column (shorcut key X)
- a column line is added at the cursor position
Add row (shorcut key Y)
- a row line is added at the cursor position
Delete column (shortcut key Ctrl X)
- the column near the cursor position is deleted
Delete row (shortcut key Ctrl Y)
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- the row near the cursor position is deleted
Mouse adds / deletes columns (activated using shortcut key Shift X)
-  clicking the left  mouse  button adds a column and the right  mouse button deletes  the 
nearest column
Mouse adds / deletes rows (activated using shortcut key Shift Y)
- clicking the left mouse button adds a row and the right mouse button deletes the nearest 
row
Delete whole grid (shortcut key Ctrl Z) 
- the whole grid is deleted and a new one can be created 
Display background (shortcut key O)
- background objects (see the previous paragraph) are displayed
Save modelled grid (shortcut key W)
- the model grid is stored in the ASCII file NAME.XY  (see  4.2.11.2 Finite difference  
model grid)
Automatic grid generation (shortcut key A) 
- a grid is generated automatically in dependence on two parameters entered by the user – 
the minimal block size and block size increment. The algorithm for automatic grid genera-
tion tries to ensure, that all points XYZ are as close to the grid block centre as possible and 
the size of grids uniformly increases in areas without points. A simple example of such a 
grid is in figure 4.2.9.
 

 
Fig. 4.2.9: Automatically created finite element model grid.

In addition to coordinates of grid lines the file  NAME.XY also contains the list of points 
with grid coordinates (for example the uppermost point in figure 4.2.9 has grid coordinates 
3 1 and the rightmost point has grid coordinates 40 9), which are important for the location 
of points (such as wells) in the mathematical model.

4.2.10 Output
The items under  the  Output menu are  intended for  the  output  of  grid  files  in  various 
formats extending the SurGe usability and compatibility with some GIS and gridding / map-
ping systems. Support for additional systems are solved as a set of stand-alone conversion 
utilities (see section 4.3 Supported map formats).
The following list contains a short description of individual menu items. 

Grid as ASCII file 
Z-values of the surface are stored in ASCII format in the file NAME.GRs. This format is 
compatible with the grid file format used by Surfer (Golden Software) – see section 3.8.6 
Grids.
Remark: A grid compatible with Surfer  (stored in ASCII format)  can be read using the 
menu item File / Read grid from ASCII file.
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Grid as GRASS file 
Z-values of the surface are stored in ASCII format in the file NAMEs.TXT. This file, com-
patible with GRASS GIS system, can be imported as a raster file into LandSerf, a free ap-
plication for the visualization and analysis of surfaces.

Grid as ArcGIS file 
Z-values  of  the  surface  are  stored in  ASCII  format  in  the  file NAMEs.GRD.  This  file 
format is compatible with the popular ArcGIS system and it is supported by most gridding / 
mapping systems.  

Z-values at points 
This function reads x and y coordinates from the specified input ASCII file, computes cor-
responding z values at the surface and writes the result (x, y and z values) into a specified 
output file. The input file must contain x and y coordinates in the first two items of each 
row. The rest of the row is copied into an output file. 
The format of the input file rows must be: 
X  Y  [any-text] 
The format of the output file rows is: 
X  Y  Z  [any-text]
Such a type of output provides a very important universal tool for transferring surface z val-
ues into any set of points located in the interpolation / approximation function domain. For 
example, if the x and y coordinates in the input file are triangle vertexes of an unstructured 
grid (for example the grid of a finite element model), then this tool provides conversion 
between structured and unstructured grids.

Grid as DAT file 
The grid values are stored in the format of the basic data file  NAME.GDs (see paragraph 
3.8.2 Points). The file containing grid values in this format is also referred to a generic AS-
CII grid file and it is used in many GIS systems such as Global Mapper. 

Isolines as ASCII file 
The isolines are stored in the ASCII format file NAMEa.VRs.

NPR file 
Surface values are interpolated into block centres of the model grid and stored in the ASCII 
file NAME.NPs. The model grid NAME.XY (see 4.2.9 Finite difference model grid) must 
exist.

4.2.11 SurGe input / output files
In addition to files used by SURGEF (see section 3.8 Formats of input and output files), 
SurGe uses some other files for input or output. These files comply to the convention rules 
for file names described in paragraph 3.8.1 Convention for file names and their format is 
described in the subsequent paragraphs.

4.2.11.1 Isolines 
Isolines are stored in a binary file named  NAME.VRs. Whenever the isolines are calcu-
lated, this file is created as a new one and the old one (if exists) is replaced. The file consists 
of the following records:
Z N X1 Y1 X2 Y2, …, XN YN

where Z is the isoline level, N is the number of isoline points and  X1 Y1 X2 Y2, …, XN 
YN  are the coordinates of points creating the isoline.
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Isolines can also be stored as an ASCII file  NAMEa.VRs (using the menu item Output / 
Isolines as ASCII file) having the same format as the basic input file NAME.DTs.
X1 Y1 Z
X2 Y2 Z
.
.
XN YN Z
.
.

4.2.11.2 Finite difference model grid
The finite difference model grid is saved in the ASCII file NAME.XY with the following 
format:
NX NY
X1   X2 …  XNX
Y1   Y2 …  YNY
DX1 DX2 … DXNX-1
DY1 DY2 … DYNY-1

IX1 JY1 LB1
IX2 JY2 LB2
.
.
IXM JYM LBM

where NX and NY are numbers of grid columns and rows respectively,
Xi i=1,…,NX  are x-coordinates of the model grid lines,
Yi i=1,…,NY  are y-coordinates of the model grid lines,
DXi i=1,…,NX-1 are grid block sizes in the x direction,
DYi i=1,…,NY-1 are grid block sizes in the y direction,
IXi JYi are model grid coordinates of a point having a label LBi.

If the file NAME.XY exists, any map created within the project name NAME (specified by 
a suffix s) can be used for the creation of the ASCII file NAME.NPs, which contains sur-
face values at centres of the finite difference model grid and which is saved as a matrix of 
real numbers containing NX-1 columns and NY-1 rows.

4.2.11.3 Colour map and isoline levels
To change the default setting for the colours in colour maps or for the levels of isolines, the 
user can specify the following files:

NAME.CLs is an input ASCII file containing z-levels for a raster colour map. If this file 
does not exist, default levels and colours are used. The format of this file is: 
Z1  [C1] [C0]     
Z2  [C2]     
Z3  [C3]     
.     
.     
Zn  [Cn]     
where  Z1,...,Zn (0<n<27) are  z-levels  specified  by  the  user  and  C0,C1,...,Cn 
(0<=Ci<61) are optional colour numbers (colour  Ci will be used between levels  Zi and 
Zi+1). If the colour number  C0 (the default value is 1 – dark blue) is specified in the first 
row, it will be used below the level Z1. If there is a row without colour specification, the de-
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fault colours will be selected. The following scale shows colours and their numbers used in 
SurGe.

 

 
Fig. 4.2.11.3 Colour scale used in SurGe 

NAME.CL is an input ASCII file with the same format and the same meaning as the file 
NAME.CLs.  If this file exists in the working directory, it is used for all maps with the 
name NAME. But if there is also the file NAME.CLs in the working directory, it has pre-
cedence before the file NAME.CL for the map with the suffix s.

NAME.LVs is an input ASCII file containing user-defined z-levels for isolines. The format 
of this file is:     
Z1     
Z2     
Z3     
.     
.     
Zn     
where  Z1,...,Zn (1<=n<=700) are z-levels specified by the user. If the file exists, the 
levels in the file are used for the computation of isolines and the dialog for the specification 
of isoline levels is not displayed.

NAME.LV is an input ASCII file with the same format and the same meaning as the file 
NAME.LVs. If this file exists in the working directory, it is used for all maps with the pro-
ject name NAME. But if there is also the file NAME.LVs in the working directory, it has 
precedence before the file NAME.LV for the map with the suffix s.

4.2.11.4 Cross-sections position
As mentioned in paragraph  4.2.7 Cross-section display,  the position of the cross-section 
may be saved for later use with the same surface or with related surfaces having the same 
domain and differing only by suffix. The cross-section position is saved in the ASCII file 
NAME.RZY containing one or more (but at most nine) lines with the format:
L  n   X1 Y1   X2 Y2 … Xn Yn

where L is a character (A-I) designating the cross-section, n is the number of cross-section 
points and  Xi Yi are x and y coordinates of cross-section points.

4.3 Supported map formats
4.3.1 Review of supported map formats
SurGe supports several map formats used by other mapping / gridding systems like GRASS 
or ArcGIS. Some of them are directly supported by SurGe, the others are supported by 
means of conversion command line utilities described in the next paragraph. The review of 
supported mapping / gridding systems and the type of their support follows. 

Surfer (Golden Software) grid format
- input: menu item File / Read grid from ASCII file
- output: menu item Output / Grid as ASCII file. 
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7.5-minute DEM (USGS Digital Elevation Model) grid format
- input: command line utility DEMGRD.EXE for converting a DEM file to a SurGe ASCII 
grid file and ASCII data file (see the next section Conversion command line utilities). 

GRASS grid format
- input: command line utility GRSGRD.EXE for converting of a GRASS ASCII grid file to 
a SurGe ASCII grid file and ASCII data file (see the next section 4.3.2 Conversion com-
mand line utilities).
- output: menu item Output / Grid as GRASS file. Can be used for example as a grid input 
in LandSerf, a free software for visualization and analysis of surfaces (see [S4]).

ArcGIS ESRI grid format
- input: command line utility ARCGRD.EXE for converting of a ArcGIS ASCII grid file to 
a SurGe ASCII grid file and ASCII data file (see the next section  Conversion command 
line utilities).
- output: menu item Output / Grid as ArcGIS file. Can be used for example as a grid input 
in LandSerf, a free software for visualization and analysis of surfaces (see [S4]). 
Generic ASCII grid file
- output: menu item Output / Grid as DAT file. Can be used for example as a grid input in 
DLGV32 (Global Mapper, see [S5]). 

ESRI Shapefile format
-  input: command line utility SHPDAT.EXE for converting an ESRI Shapefile format to 
SurGe data objects (see the next section).

4.3.2 Conversion command line utilities 
The purpose of this package is to provide command line utilities for conversion between 
commonly used map formats and map objects used in the SurGe software. Up to now there 
are four utilities: 

DEMGRD.EXE Conversion from 7.5-minute DEM file to ASCII GRD file and ASCII 
basic input file.

GRSGRD.EXE Conversion from GRASS grid file to ASCII GRD file and ASCII basic 
input data file.

ARCGRD.EXE Conversion from ArcGIS grid file to ASCII GRD file and ASCII basic 
input data file.

SHPDAT.EXE Conversion from ESRI Shapefile format to SurGe data objects.

If requested by users, the package will extend to other map file formats (of course, if there 
is a complete description of the map file format). 

4.3.2.1 DEMGRD 
Command line syntax:  DEMGRD name_of_DEM_file suffix 
Command line example: 
C:\DEMFILES>DEMGRD MSH.DEM a 
Enter resolution (minimum is 1): 2 
MSH.DEM is the name of DEM file
a       is the suffix 

This command reads the DEM file MSH.DEM and creates files MSH.GRa (grid in ASCII 
format) and MSH.DTa (basic input data).
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A 7.5-minute DEM file contains a grid file,  where the size of each grid block is 30x30 
meters. The number of grid nodes can be greater than 300000 (the maximum number of in-
put points for SurGe) – that is why DEMGRD asks for "resolution". In our example the res-
olution is 2,  which means,  each second node in  the x and y direction is written in the 
MSH.DTa file. If, for example, the resolution is 3, then every third node is written and so 
on.
The file MSH.DTa can be used as a basic input file for SurGe. The grid file MSH.GRa can 
be imported into SurGe using the menu item "File / Read grid from ASCII file". 

4.3.2.2 GRSGRD 
Command line syntax:  GRSGRD name_of_GRASS_file suffix 
Command line example:
C:\DEMFILES>GRSGRD SFACE.TXT a
Enter resolution (minimum is 1): 2 
SFACE.TXT is the name of GRASS ASCII grid file
a         is the suffix 

This command reads the GRASS grid file  SFACE.TXT and creates files  SFACE.GRa 
(grid in ASCII format) and SFACE.DTa (basic input data).
The number  of grid  nodes can be greater  than 300000 (the maximum number of input 
points for SurGe) – that is why GRSGRD asks for "resolution". In our example the resolu-
tion  is  2,  which  means,  each  second  node  in  the  x  and  y  direction  is  written  in  the 
SFACE.DTa file. If, for example, the resolution is 3, then every third node is written and 
so on.
The file  SFACE.DTa can be used as a basic input file for SurGe. The grid file  SFACE.-
GRa can be imported into SurGe using the menu item "File / Read grid from ASCII file". 

4.3.2.3 ARCGRD 
Command line syntax:  ARCGRD name_of_ArcGIS_file suffix 
Command line example:
C:\DEMFILES>ARCGRD SFACE.GRD a
Enter resolution (minimum is 1): 2 
SFACE.GRD is the name of ArcGIS ASCII grid file
a         is the suffix 
This  command reads the ArcGIS grid  file  SFACE.GRD and creates  files  SFACE.GRa 
(grid in ASCII format) and SFACE.DTa (basic input data).
The number  of grid  nodes can be greater  than 300000 (the maximum number of input 
points for SurGe) – that is why ARCGRD asks for "resolution". In our example the resolu-
tion  is  2,  which  means,  each  second  node  in  the  x  and  y  direction  is  written  in  the 
SFACE.DTa file. If, for example, the resolution is 3, then every third node is written and 
so on.
The file  SFACE.DTa can be used as a basic input file for SurGe. The grid file  SFACE.-
GRa can be imported into SurGe using the menu item "File / Read grid from ASCII file". 

4.3.2.4 SHPDAT 
Command line syntax:  SHPDAT name_of_Shapefile name_of_SurGe_file [a]
Command line example:
C:\SHAPEFILES>SHPDAT SHXYZ.SHP SHXYZ.DTa 
SHXYZ.SHP is the name of Shapefile
SHXYZ.DTa is the name of SurGe basic input file. 
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This command reads X,Y and Z coordinates contained in the binary file SHXYZ.SHP and 
writes them in the ASCII file  SHXYZ.DTa, which can be used as a basic input file for 
SurGe.
SHPDAT can convert not only points, but also boundaries, faults or polylines – it depends 
on the type of shape in the Shapefile (see [S6]). The following types can be converted: 

TYPE OF SHAPEFILE CONTENT SURGE OBJECT

PointZ (type 11) X, Y and Z coordinates of points points XYZ (DTs) or 
added points (DBs)

Polyline (type 3) or 
Polygon (type 5) X and Y coordinates of polyline(s) boundaries (HR) or 

faults (ZL)
PolylineZ (type 13) or  
PolygonZ (type 15) X, Y and Z coordinates of polyline(s) spatial polylines (LNs)

If, for example, a boundary is stored in two or more Shapefiles, parameter a can be used to 
create a single SurGe boundary file:
C:\SHAPEFILES>SHPDAT SHBOUND1.SHP SHBOUND.HR
C:\SHAPEFILES>SHPDAT SHBOUND2.SHP SHBOUND.HR a
SHPDAT distinguishes between a boundary and faults according to used extension in the 
output file name (HR or ZL) and creates appropriate data format. 

4.4 Calculation of volumes
VOLUME is a dialog-based programme, which enables to calculate the volume between 
two surfaces created by SurGe. It can be run from Surge Project Manager (see 4.1 Project  
manager) and looks like this:
 

The usage of VOLUME is easy, but some points should be emphasized: 
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• Both upper and lower surfaces cannot be specified as constants. At least one surface 
must be specified as a grid file.

• If both surfaces are specified as grid files, the grids must have the same sizes and the 
same domains. 

• The volume can be limited by planes defined in a separate file. The name of file is ar-
bitrary, but it must have the following format:
B1
X1 Y1 Z1
X2 Y2 Z2
X3 Y3 Z3
B2
X1 Y1 Z1
X2 Y2 Z2
X3 Y3 Z3
.
.
where
X1 Y1 Z1, X2 Y2 Z2  and   X3 Y3 Z3  are coordinates of three points defining the 
plane,
Bi=1, if the volume has to be calculated above the plane,
Bi=0, if the volume has to be calculated below the plane. 

• If a file containing the boundary is specified, grid nodes outside the boundary are not 
involved into volume computation. 

• The grid obtained as a result of volume computation can be saved as a file. The name 
of the file is VLf.GRa. There is also a possibility to specify a file containing x and y 
coordinates. Then VOLUME will create the file  VL.DTa with the same x and y co-
ordinates and z values corresponding to the grid. 

An example of volume calculation is in section 5.5 Maps of thickness and volume calcula-
tions.
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Chapter 5
Solving special tasks
In the next sections there are examples of interpolation problems, which need special pro-
cedures to be solved. Most of the procedures are directly coded in the graphical user inter-
face SurGe but some procedures are solved using stand-alone utilities. 

5.1 Zero-based maps
Certain types of maps (for example maps of pollutant concentration in some area, maps of 
precipitation, maps of rock porosity or permeability and so on) have a common feature – 
their z-values cannot be negative. Let us name these maps as zero-based maps. 
If a smooth interpolation is used for such types of maps, there is a real “danger” that the res-
ulting function will be negative in some regions. As discussed in paragraph 2.4.1 Smooth-
ness of interpolation and oscillations, undesired oscillations and improper extremes cannot 
be avoided in such cases. For this reason, the graphical user interface SurGe offers a possib-
ility (using the menu item Substitute below) to substitute all z-values of the surface, which 
are less than a specified constant (for example zero) by this constant. Similarly, the menu 
item  Substitute above enables to “cut off” values of the surface exceeding the specified 
constant.
As an example of a zero-based map we will use the data set CONC.DTa containing sulphate 
concentration measured in a soil layer. An interesting comparison of results obtained using 
different interpolation methods provides an evaluation of how maximal and minimal z-val-
ues of points  XYZ were exceeded by the generated surface. As in all preceding examples, 
the Kriging method was used with the linear model and zero nugget effect, the Radial basis 
function method with the multiquadric basis functions and zero smoothing parameter and 
the Minimum curvature method were used with a tension of 0,1. 
These are summarized in the following table.

 

The difference between the surfaces created using the Kriging and Radial basis function 
methods is less than 1,0E-7 – that is why the results in the table are the same for these meth-
ods.
The next figure contains maps obtained using the ABOS and Kriging method. In both cases 
negative values were substituted with zero values. According to the opinion of many SurGe 
users, “pits” and “circular” contours in the surface generated by the Kriging method are un-
desirable.

interpolation method exceeding the 
minimal value

exceeding the 
maximal value

Kriging -18,8455 -4,4299
Radial basis functions -18,8455 -4,4299
Minimum curvature -46,4989 +0,7771
ABOS, q=0,5 -24,7731 +1,9323
ABOS, q=3,0 -16,6539 +1,8871
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Fig. 5.1: Map of sulphate concentration created using the ABOS and Kriging method.

5.2 Extrapolation outside the XYZ points domain
The extrapolation properties of the ABOS method was examined in paragraph 2.4.3 Con-
servation of an extrapolation trend. Let us note that we only examined the domain determ-
ined by points  XYZ.  In the next example (see figure 5.2a),  aerodynamic resistance data 
measured at a small part of a racing car body was interpreted to obtain results outside the 
domain determined by points XYZ. 

 
Fig. 5.2a: Aerodynamic resistance data measured at a small part of a racing car body.

As the picture indicates, the desired domain of the interpolation function set by the bound-
ary (red rectangle) exceeds the domain defined by the points XYZ. The boundary was set so 
that the aerodynamic resistance could be estimated aside the data on the left and bottom. 
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The interpreter  tested several interpolation methods available in the Surfer  software  but 
without satisfactory result.

As explained in paragraph 4.2.3.10 Interpolation with a trend surface, SurGe implements a 
special procedure enabling to conserve the extrapolation trend. This procedure was imple-
mented to the examined data with the result represented in figure 5.2.b. For comparison, 
figures 5.2.c and 5.2.d contains results from the Kriging and Minimum curvature methods, 
which were not accepted as satisfactory. 

Fig. 5.2.b: Aerodynamic resistance data interpolated by SurGe.

 
Fig. 5.2.c: Aerodynamic resistance data interpolated by the Kriging method.
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Fig. 5.2.d: Aerodynamic resistance data interpolated by the Minimum curvature method.

5.3 Seismic measurement
The processing of seismic data is one of the most significant tasks for geologists if they 
have to create a geological map of some underground rock structure. The typical results of 
seismic measurement are times at which reflected sound waves return from a certain bound-
ary between different types of rock. These times are, of course, measured from some datum 
level and they are usually recorded using a dense mesh covering the area of interest with a 
typical number of nodes between 10000 and 100000. 
Because the homogeneity of covering rocks cannot be assumed and the speed of sound 
waves in covering rocks is unknown or known only approximately, the measurement must 
be supported by precise depth values usually measured at exploration wells. In general, the 
interpreter has to work with two sets of data – the first one is the dense mesh of reflection 
times and the second one is the measurement of rock structure depth at wells. Let us note 
that the number of wells is usually small in comparison to the number of points at which the 
reflection time is measured.
To demonstrate the interpretation of seismic measurement we will use the data set SEIS-
M1.DTc containing reflection times – the corresponding grid is shown in the next figure.

 
Fig. 5.3.a: Grid of reflection times created from the SEISM1.DTc data set.
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The file SEISM1.DTc contains reflection times in the range from 1736 to 1875 seconds at 
25853 points. It is obvious that the lower the value of reflection time, the higher the position 
of the rock structure boundary.

The depth of the rock structure was also measured at 14 wells and the results were stored in 
the file containing the second data set SEISM1.DTa – see the next list of the file content.
 1225.976  2339.511  -2246  W-01
  837.871  2270.595  -2250  W-02
  428.004  2118.255  -2271  W-03
  859.634  1878.863  -2272  W-04
  181.357  1519.776  -2292  W-05
 1940.525  2187.171  -2277  W-06
 2738.498  2292.358  -2255  W-07
 2981.517  2375.783  -2238  W-08
 3344.232   935.805  -2338  W-09
 2121.882   812.481  -2317  W-10
  493.292   500.547  -2309  W-11
 1519.776  1733.777  -2267  W-12
 3663.421  2143.645  -2264  W-13
 2999.652  2172.662  -2252  W-14

As follows from the list, the range of depths is -2338 to -2238 meters. As a rule, the depth 
of a geological structure has a negative value measured from some datum plane (for ex-
ample sea-level).

The standard procedure of seismic data processing is the following:
1. The map of reflection times is created.
2. For all wells the sound speed is calculated from known structure depth and reflec-

tion time at the well.
3. The velocities known at well positions are used for the creation of the so-called ve-

locity map.
4. The velocity map is multiplied by the map of reflection times and thus the map of 

depths is obtained.

The SURGEF offers  another solution: to create a depth map directly from the structure 
depths at wells using the reflection time grid as an external grid. This means that the grid 
containing  the  map of  reflection  times  SEISM1f.GRc is  copied  (renamed)  into  the  file 
SEISM1f.GRa and this grid is read at the beginning of the interpolation process. It may 
seem to be strange especially if we realize that the reflection times are positive values while 
the structure depths are negative. Let us have a closer look at the procedures performed by 
SURGEF.

Firstly, SURGEF is run for the data set SEISM1.DTa and it is instructed to read the external 
grid SEISM1f.GRa (which is a copy of SEISM1f.GRc and represents the map of reflection 
times) by answering Y to the prompt:
READ FILE .GRD? (Y/N) [N] Y
Then SURGEF changes this grid using the linear transformation a⋅P i , jbP i , j , where 

the constants a and b minimize the term ∑
i=1

n

a⋅f  X i , Y ib−DZ i
2  , as described in sec-

tion 2.2.8 Iteration cycle.

In this case the constant  a was computed as the negative number -1.160139 and together 
with b (-217.38) changed the grid so that the sum of squared differences between the new 
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surface and structure depths at wells is minimal. As expected there were some differences 
between the new surface and the structural depths at wells because of heterogeneity of cov-
ering rocks; however these differences were used in the next iteration cycle (cycles) as in 
the normal interpolation process.
As a result, the new surface passes through negative z-coordinates of structural depths while 
conserving the morphology corresponding to the reflection times.

 
Fig. 5.3.b: Surface created directly from the seismic reflection times.

5.4 Wedging out of a layer
Construction  of  layer  geometry  is  one  of  the  basic  tasks  in  reservoir  engineering.  The 
boundaries between individual layers are constructed as surfaces passing through structural 
depths (z-coordinates) measured in wells. As explained in section  5.3 Seismic measure-
ment, layer construction may be combined with seismic measurement, if it is available. 
If there is a small layer thickness indicated in some wells, no algorithm for smooth interpol-
ation can ensure that the bottom layer boundary will not exceed the top layer boundary. Fig-
ures 5.4a and 5.4b illustrates such a situation – in figure 5.4a there is a top layer boundary 
(contained  in  the  file  GRES.DTa)  and  bottom  layer  boundary  (contained  in  the  file 
GRES.DTb) of a gas reservoir structure including the position of the cross-section A-A’, 
where the bottom layer boundary exceeds the top one (see figure 5.4b). Such a phenomenon 
suggests that a so-called wedging out of layer (which is common in geology) should be in-
terpreted. 
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Fig. 5.4a: Maps of the top and bottom layer boundary.

 
Fig. 5.4b: Cross-section A-A’ through the top and bottom layer boundary.

This problem can be effectively solved in the SurGe graphical interface using mathematical 
operations offered in the dialog  Math calculation with grids (see  4.2.3.8 Mathematical  
calculations with grids), where selected binary mathematical operation is performed for all 
z-values at nodes of grids representing the two surfaces. 

There are two mathematical operations represented by characters $ and %, which can be 
utilized for solving the wedging out of layer problem. In the case of the first operation ($) 
the resulting value is the z-value of the first surface, but if the z-value of the second surface 
is greater, the resulting value is the average. In the case of the second operation (%) the res-
ulting value is the z-value of the second surface, but if the z-value of the second surface is 
greater than the z-value of the first surface, the resulting value is the average.

Both mentioned operations were applied for the presented surfaces and the resulting new 
surfaces were stored with new suffixes 1 and 2. Figure 5.4c contains the cross-section A-A’ 
through the new surfaces indicating that the wedging out of layer problem was properly 
solved.
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Fig. 5.4c: Cross-section A-A’ through the top and bottom layer boundary after solving the 
wedging out of layer problem.
 

5.5 Maps of thickness and volume calculations 
To demonstrate this feature an example concerning the estimate of new snow volume in an 
avalanche field after an avalanche event is presented. Two data sets were available for solv-
ing this problem – AVALAN.DT0 containing the measurement of snow surface before the 
avalanche event and AVALAN.DT1 containing the measurement of snow surface after the 
avalanche event.

In figure 5.5a there are two maps of snow surfaces created from the above-mentioned files 
corresponding to the situation before and after the avalanche event; the white line is an as-
sumed boundary of the avalanche field. 

 
Fig. 5.5a: Snow surface before (on the left) and after (on the right) the avalanche event.
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There are no visible differences between both surfaces, but as soon as the first surface is 
subtracted from the second (using the menu item Interpolation /  Math calculation with 
grids), the map of the new snow thickness is obtained (see figure 5.5b).

 
Fig. 5.5b: Thickness of the new snow layer.

It is obvious from figure 5.5b that snow also increased outside the assumed boundary of the 
avalanche field – it was probably caused by the additional snow precipitation, creation of 
snow drifts and so on.

To  calculate  the  volume  of  new  snow,  the  VOLUME  utility  (see  4.4  Calculation  of 
volumes) can be used:

 
Fig. 5.5c: Calculation of new snow volume using the VOLUME utility.
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From figure 5.5c the following results are obtained:
The volume of the new snow layer in the avalanche field is 484424 m3, the horizontal area 
of the avalanche field determined by the boundary is 293144 m2 and the maximal thickness 
of the new snow layer is 3.73 m.

5.6 Digital model of terrain
The digital model of terrain is a common term for computer processing of geodetic meas-
urement.

If the input data represents measurements from some terrain, it is usually suitable to use 
only linear tensioning with a small number for smoothing which is close to the Triangula-
tion with linear interpolation method – compare digital models of a stone quarry (see [S8]) 
in figures 5.6a and 5.6b.

As a rule, characteristic points of terrain are measured – this means that the person perform-
ing such a measurement surveys only points where the slope of terrain changes (tops, edges, 
valleys and so on). For interpretation of such data, the triangulation with linear interpolation 
method is usually used, so the ABOS method is applicable as well.

 
Fig. 5.6a: Digital model of the stone quarry created using the Triangulation with linear in-
terpolation method.

As pointed out in paragraph 1.2.1 Triangulation with linear interpolation, the domain of 
the triangulation method is restricted to the convex envelope of the points XYZ. To restrict 
the domain of the function constructed using the ABOS method by the same way, a bound-
ary  as  a  convex  envelope was  created  (see  4.2.6.2  Boundaries)  and  nodes  outside  the 
boundary were set as undefined using the SurGe menu item  Interpolation /  Blank grid 
outside boundary.
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Fig. 5.6b: Digital model of the stone quarry created using the ABOS method.

5.7 Digital Elevation Model
Digital Elevation Model (DEM) is a standard (see [S9]) for the ASCII format of files con-
taining digital geological and geographical data produced by the United States Geological 
Survey (USGS). It is supported by most GIS (geographic information system) applications 
such as Global Mapper, ARCGIS, GRASS, Geomatics, MapInfo, Intergraph, ERDAS and 
so on.

The data is stored as  arrays of regularly spaced elevation values referenced horizontally 
either to a Universal Transverse Mercator (UTM) projection or to a geographic coordinate 
system. The grid cells are spaced at regular intervals along south to north profiles that are 
ordered from west to east.

In fact the DEM file is a grid file, because the elevation data (z-coordinates) are specified at 
nodes of a square grid (where the size of a grid square is 30 meters), but the format of this 
file is different from the format of a SurGe grid file. 

To display DEM files using SurGe, there is a stand-alone console utility DEMGRD  (see 
4.3.2 Conversion command line utilities) included in the SurGe software enabling to con-
vert DEM files into ASCII Surfer grid files. Moreover, the DEMGRD utility creates the ba-
sic data file, because SurGe cannot read a grid file without the basic data file. Then the user 
of SurGe has two possibilities – to import the grid file using the menu item File / Read grid 
from ASCII file or to create a new grid from the basic data file.

As an example of a DEM file displayed by the SurGe software there is an elevation model 
of mount Shasta in Northern California.
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Fig. 5.7: Digital elevation model of mount Shasta in Northern California.

5.8 Construction of model grid
One of the most important applications of SurGe in my profession are projects of geological 
models of underground gas storages (UGS) in the Czech Republic. The geological models 
were implemented for these storages:

• Dolni Dunajovice
• Lobodice
• Stramberk
• 9.-11. sarmatian layer in Tvrdonice

SurGe was used for the map creation of both geological surfaces of layers and maps of rock 
properties such as porosity, permeability or net to gross ratio. 
Geological models had to be transferred into a 3D grid for a mathematical model in EC-
LIPSE (3D three phase model of fluid flow in porous media, see [S10]) which enables to 
work with so-called corner point geometry (CPG) grids. A corner point geometry grid is 
formed by general hexahedrons and makes it possible to adapt the grid to the shape of a 
reservoir structure including curved boundaries, tectonic faults and wedging out of layers. 
An important concept in the construction of grid data for corner point geometry is the idea 
of “coordinate lines”. Coordinate lines are straight lines upon which all the cell corners 
must lie. Thus if there are NX cells in the x-direction and NY cells in the y-direction, there 
will be (NX+1)*(NY+1) coordinate lines. Models of the above mentioned storages were 
created using vertical coordinate lines, but in more general grids they can be off-vertical to 
coincide with sloping faults (see the next figure).

 
Fig. 5.8a: Construction of corner point geometry grids.
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The ECLIPSE digital representation of corner point geometry grid consists of data follow-
ing two keywords COORD and ZCORN, which have to be included in the input data file. 
The keyword COORD introduces the data describing coordinate lines and the keyword 
ZCORN introduces the data describing z-coordinates of cell corners. 

To construct a model grid for ECLIPSE, three utilities have been developed: 

• EGRID is a simple graphical utility for interactive creation of a model grid horizontal 
projection consisting of general quadrangles.

• CPG is a console utility generating data for keywords COORD and ZCORN. As an in-
put, the CPG utility uses the horizontal projection of the model grid created by the 
EGRID utility and surfaces of layers generated by SurGe. The surfaces of layers must 
be specified (using the suffix convention) in order of increasing depth beginning from 
the most top layer, and the top surface of each layer must be specified as the first. 
There may be interspaces between layers, which are considered to be impermeable and 
which are used for modelling of impermeable bands.

• PROP is a console utility generating data for keywords, which describe rock proper-
ties, for example PORO (porosity),  PERMX (permeability in the x direction), NTG 
(net to gross ratio), SGAS (gas saturation) and so on. As an input, the PROP utility 
uses the horizontal projection of the model grid created by the EGRID utility and maps 
of layer properties created by SurGe. Layers must be specified (using the suffix con-
vention) in order of increasing depth beginning from the most top layer.

An example of a complicated ECLIPSE model grid with faults, which was created using 
named utilities, is in the next two figures. The model consists of ten layers having very het-
erogeneous properties – porosity and permeability. As the geological model shows, there 
are “channels” with high porosity and permeability in the bottom layers where preferential 
fluid flow can be expected.

 
Fig. 5.8b: Porosity of a geological model.
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Fig. 5.8c: Permeability of a geological model.

The previous two figures are hard-copies of screens displayed by GRIDV, an OpenGL ap-
plication written as a post-processor for viewing and checking the ECLIPSE model results. 
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Conclusion
The most important result of this work is the design and especially the computer imple-
mentation of the new interpolation / approximation method ABOS for digital generation of 
surface  passing  through  Z coordinates  of points  irregularly  distributed in  3D Euclidean 
space. In contrast to sophisticated interpolation methods such as Radial basis functions, Kri-
ging or Minimum curvature, the ABOS method does not fulfil any mathematical formula-
tion such as linear combination of basis functions, statistical formulation of the best linear 
unbiased estimate or requirement of minimal curvature of the resulting surface. Instead, it 
provides  tools  for  modelling  the  resulting  surface  based  on  numerical  tensioning  and 
smoothing enabling to create a broad range of surface shapes and to accommodate the res-
ulting surface according to the user’s conception. Moreover, the ABOS method makes it 
possible to solve large problems without the necessity to search points in a specified sur-
rounding of the grid nodes and without the necessity to solve a system of equations. As for 
computational speed, ABOS is up to twenty times faster than methods based on solving 
equation systems, for example the Kriging method.
The  computer  implementation  SURGEF.EXE  and  namely  the  implementation  of  user 
graphical interface SurGe extends the applicability of the ABOS method and enables to:
- create and manage projects containing many maps
- easily change interpolation parameters and to experiment with surface shapes
- filter input data
- transform coordinates of map objects (points, faults, polylines, boundaries) 
- digitise map objects using mouse and keyboard
- model discontinuity in the generated surface 
- perform mathematical calculations with surfaces 
- blank the grid nodes outside the boundary 
- double the grid using cubic polynomial interpolation between grid nodes
- output z coordinates of the generated surface at any set of points from domain 
- calculate isolines and display them
- display a raster colour map and 3D view of the resulting surface 
- display a shadowed colour map and shadowed 3D view
- define and display cross-sections through several surfaces 
- compute and display gradient lines 
- solve special tasks using special procedures such as 

- wedging out of layers 
- preserving extrapolation trend in areas without data 
- direct  conversion  of  seismic  reflection  times  into  the  structural  depth of  layer 

boundary 
- creating layer thickness maps and volume calculations 

One of the most important applications of SurGe in my profession are projects of geological 
models of underground gas storages (UGS) in the Czech Republic. The geological models 
were  implemented  for  storages  Dolni  Dunajovice,  Lobodice,  Stramberk  and  9th –  11th 

sarmatian layer in Tvrdonice, where in all cases the ABOS method was applied for the map 
creation of both geological surfaces of layers and rock properties such as porosity, permeab-
ility and net to gross ratio.
Furthermore, the method was used for model creation of aquifer structures while processing 
remediation projects in localities CHZ Sokolov, Stráž pod Ralskem and Licoměřice.
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After more than three-years of publication through the medium of Internet WWW pages 
(see [13]) and through the medium of more than 300 software distributors (see List of selec-
ted SurGe distributors in References), the ABOS method and SurGe software has proven 
wide applicability. Now thousands of people worldwide use the software not only in tradi-
tional  fields  as  reservoir  engineering,  geology  and  geophysics,  but  also  in  hydrology, 
geodesy, archeology, bathymetry, gravimetry, genetics, neurology, electronics, aerodynam-
ics or nuclear physics; some people use SURGEF.EXE as an interpolation engine in their 
own mapping software.
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